激光檢測

激光檢測

激光檢測技術應用十分廣泛,如激光干涉測長、激光測距、激光測振、激光測速、激光散斑測量、激光准直、激光全息、激光掃描、激光跟蹤、激光光譜分析等都顯示了激光測量的巨大優越性。激光外差干涉是納米測量的重要技術。激光測量是一種非接觸式測量,不影響被測物體的運動,精度高、測量範圍大、檢測時間短,具有很高的空間解析度。

測距原理


激光二極體對準目標發射激光脈衝。經目標反射后激光向各方向散射。部分散射光返回到感測器接收器,被光學系統接收后成像到雪崩光電二極體上。雪崩光電二極體是一種內部具有放大功能的光學感測器,因此它能檢測極其微弱的光信號。記錄並處理從光脈衝發出到返回被接收所經歷的時間,即可測定目標距離。激光感測器必須極其精確地測定傳輸時間,因為光速太快。如,光速約為3X10^8m/s,要想使解析度達到1mm,則測距感測器的電子電路必須能分辨出以下極短的時間: 0.001m(3X10^8m/s)=3ps 要分辨出3ps的時間,這是對電子技術提出的過高要求,實現起來造價太高。但是如今的激光感測器巧妙地避開了這一障礙,利用一種簡單的統計學原理,即平均法則實現了1mm的解析度,並且能保證響應速度。遠距離激光測距儀在工作時向目標射出一束很細的激光,由光電元件接收目標反射的激光束,計時器測定激光束從發射到接收的時間,計算出從觀測者到目標的距離;LED白光測速儀成像在儀錶內部集成電路晶元CCD上,CCD晶元性能穩定,工作壽命長,且基本不受工作環境和溫度的影響。因此,LED白光測速儀測量精度有保證,性能穩定可靠。

測位移原理


激射器鏡紅激射測,反射激收器鏡,線收,根據距離,線角“”。根據角及激距離,號器計算傳器測距離。,束收元件置模擬,微器析,計算輸值,戶設模擬量窗,按例輸標準據號。量輸,則設窗導,窗截止。另,模擬量量輸獨設置檢測窗。