古典概型
概率論中的模型
古典概型也叫傳統概率、其定義是由法國數學家拉普拉斯 (Laplace ) 提出的。如果一個隨機試驗所包含的單位事件是有限的,且每個單位事件發生的可能性均相等,則這個隨機試驗叫做拉普拉斯試驗,這種條件下的概率模型就叫古典概型。在這個模型下,隨機實驗所有可能的結果是有限的,並且每個基本結果發生的概率是相同的。例如:①擲一次硬幣的實驗(質地均勻的硬幣),只可能出現正面或反面,由於硬幣的對稱性,總認為出現正面或反面的可能性是相同的;②如擲一個質地均勻骰子的實驗,可能出現的六個點數每個都是等可能的;③又如對有限件外形相同的產品進行抽樣檢驗,也屬於這個模型。古典概型是概率論中最直觀和最簡單的模型,概率的許多運算規則,也首先是在這種模型下得到的。
1,試驗中所有可能出現的基本事件只有有限個;
古典概型
具有以上兩個特點的概率模型是大量存在的,這種概率模型稱為古典概率模型,簡稱古典概型,也叫等可能概型。
古典概型的特點有限性(所有可能出現的基本事件只有有限個)和等可能性(每個基本事件出現的可能性相等)
基本事件的特點:
(1)任何兩個基本事件是互斥的。
(2)任何事件(除不可能事件)都可以表示成基本事件的和。
一個試古典概型的概率公式驗是否為古典概型,在於這個試驗是否具有古典概型的兩個特徵——有限性和等可能性,只有同時具備這兩個特點的概型才是古典概型。
如果一次實驗中可能出現的結果有n個,而且所有結果出現的可能性都相等,那麼每一個基本事件的概率都是;如果某個事件A包含的結果塔、有m個,那麼事件A的概率為
(1)算出所有基本事件的個數n;
概率及古典概型
(3)代入公式,求出P(A)。
古典概率模型是在封閉系統內的模型,一旦系統內某個事件的概率在其他概率確定前被確定,其他事件概率也會跟著發生改變。概率模型會由古典概型轉變為幾何概型。
投擲一個質地均勻,形狀規範的硬幣,正面和反面出現的概率是一樣的,都是。很多人會有問,為什麼正面和反面出現的概率是一樣的?顯然,硬幣是質地均勻,形狀規範的,哪一面都不會比另一面有更多的出現機會,正面和反面出現的概率是一樣的。這稱為古典概型的對稱性,體育比賽經常用到這個規律來決定誰開球,誰選場地。為了解釋這個現象,在歷史上,有很多大師對這個問題進行過驗證結果可以看出,隨著次數的不斷增加,正面出現的頻率越來越接近50%,我們也有理由相信,隨著次數的繼續增加,正面和反面出現的頻率將固定在處,即正面和反面出現的概率都為。
這是個典型的古典概型的例子,它的特點是:實驗結果只有有限個,而且每個實驗結果出現的概率是一樣的。正因為這兩個特點,我們能夠很容易算出來每個實驗結果出現的概率,應該是實驗結果個數的倒數。如上例中,實驗結果只有正面和反面,所以,正面和反面出現的概率為2的倒數。