劉蒙
淮陰師範學院教師
劉蒙,男,1987年5月7日出生,安徽蕭縣人,博士,淮陰師範學院數學科學學院教師。主要研究方向:隨機微分方程、生物數學。美國數學會《Mathematical Review》與歐洲數學會《Zentralblatt fur Mathematik》評論員。
2003年9月—2007年7月,哈爾濱工業大學(威海),數學與應用數學,本科
2007年9月—2009年7月,哈爾濱工業大學(威海),計算數學,碩士研究生,導師:王克教授
2009年9月—2012年7月,哈爾濱工業大學,基礎數學,博士研究生,導師:王克教授
2012年8月—至今,淮陰師範學院,數學科學學院,教師
1.非線性動力學系統動態平衡規律研究,教育部高等學校科學研究優秀成果獎二等獎,2012,排名第四。
2.江蘇省高校“青藍工程”優秀青年骨幹教師。
1.污染環境中隨機生物種群模型的動力學研究,國家自然科學基金青年基金,2014.1-2016.12,主持。
2.污染環境中隨機生物種群模型的動力學性質,江蘇省自然科學基金青年基金,2013.7-2016.6,主持。
3.混合隨機 Lotka-Volterra 模型的滅絕性和持久性,江蘇省高校自然科學基金面上項目,2013.8-2015.12,主持。
4.隨機生物種群模型若干性質的研究,國家自然科學基金面上項目,2012.1-2015.12,參與。
5.幾類隨機混合系統的穩定性及應用,國家自然科學基金天元基金,2012.1-2012.12,參與。
1.M.Liu, K.Wang, Survival analysis of stochastic single-speciespopulation models in polluted environments, Ecol. Model. 220 (2009)1347--1357.
2.M.Liu, K.Wang, Persistence and extinction of a stochasticsingle-specie model under regime switching in a pollutedenvironment. J. Theoret. Biol. 264 (2010) 934--944.
3.M.Liu, K.Wang, Persistence and extinction of a stochasticsingle-specie model under regime switching in a pollutedenvironment II. J. Theoret. Biol. 267 (2010) 283–291.
4.M.Liu, K.Wang, Extinction and permanence in a stochastic nonautonomouspopulation system, Appl. Math. Lett. 23 (2010) 1464-1467.
5.M.Liu, K.Wang, Q.Wu, Survival analysis of stochastic competitive models in a polluted environment and stochastic competitive exclusion principle, Bull. Math. Biol. 73 (2011) 1969-2012.
6.16
7.M.Liu, K.Wang, X.Liu, Long term behaviors of stochasticsingle-species growth models in a polluted environment, Appl. Math.Model. 35 (2011) 752-762.
8.M.Liu, K.Wang,Persistenceandextinctioninstochasticnon-autonomouslogisticsystems.J. Math. Anal. Appl. 375 (2011) 443-457.
9.M.Liu, K.Wang,Survival analysis of a stochastic cooperation system in a polluted environment, J. Biol. Syst. 19 (2011) 183-204.
10.M.Liu, K.Wang,Global stability of stage-structured predator-prey models with Beddington-DeAngelis functional response, Commun. Nonlinear Sci. Numer. Simulat. 16 (2011) 3792–3797
11.M.Liu, K.Wang, Y.Wang, Long term behaviors of stochasticsingle-species growth models in a polluted environment II, Appl. Math.Model.35 (2011) 4438–4448.
12.M.Liu, K.Wang,Asymptotic properties and simulations of a stochastic logistic model under regime switching, Math. Comput. Modelling 54 (2011) 2139–2154
13.M.Liu, K.Wang, Persistence and extinction of a non-autonomous logistic model with random perturbations, Commun. Math. Sci 10 (2012) 977–987.
14.M.Liu, K.Wang, Stationary distribution, ergodicity and extinction of a stochasticgeneralized logistic system,Appl. Math. Lett. 25 (2012) 1980–1985.
15.M.Liu, K.Wang, Asymptotic properties and simulations of a stochastic logistic model under regime switching II, Math. Comput. Modelling 55 (2012) 405-418.
16.M.Liu, K.Wang, Global asymptotic stability of a stochastic Lotka-Volterra model with infinite delays. Commun. Nonlinear Sci. Numer. Simulat17 (2012) 3115--3123.
17.M.Liu, K.Wang, On a stochastic logistic equation with impulsive perturbations,Comput. Math. Appl.63 (2012) 871-886.
18.M.Liu, Q.Wu, K.Wang, Analysis of an improved epidemic model with stochastic disease transmission. Appl. Math. Comput. 218 (2012) 9750–9758.
19.M.Liu, K.Wang, Stochasticlogisticequationwithinfinitedelay, Math. Meth. Appl. Sci. 35 (2012) 812-827
20.M.Liu, K.Wang. Persistence, extinction and global asymptotical stability of a non-autonomous predator--prey model with random perturbation.Appl. Math.Model. 36 (2012) 5344–5353
21.M.Liu, K.Wang. Persistence and extinction of a single-species population system in a polluted environment with random perturbations and impulsive toxicant input. Chaos Solitons Fractals 45 (2012) 1541–1550.
22.M.Liu, W.Li, K.Wang. Persistence and extinction of a stochastic delay Logistic equation under regime switching, Appl. Math. Lett. 26 (2013) 140-144.
23.M.Liu, K.Wang. A remark on stochastic predator-prey system with time delays. Appl. Math. Lett. 26 (2013) 318–323.
24.M.Liu, K.Wang. Asymptotic behavior of stochastic nonautonomous Lotka-Volterra competitive system with impulsive perturbations. Math. Comput. Modelling57 (2013) 909–925.
25.M.Liu, K.Wang. Population dynamical behavior of Lotka--Volterra cooperative systems with random perturbations. Discrete Contin. Dyn. Syst. 33(2013) 2495-2522.
26.M.Liu, K.Wang. Stability of a stochastic logistic model with distributed delay, Math. Comput. Modelling 57 (2013) 1112-1121.
27.M.Liu, K.Wang. Analysis of a stochastic autonomous mutualism model.J. Math. Anal. Appl. 402 (2013) 392-403.
28.M.Liu, K.Wang. A note on delay Lotka-Volterra competitive system with random perturbations. Appl. Math. Lett. 26 (2013) 589-594.
29.M.Liu, D.Fan, K.Wang. Stability analysis of a stochastic logistic model with infinite delay. Commun. Nonlinear Sci. Numer. Simulat 18(2013) 2289-2294.
30.M.Liu, K.Wang. A note on stability of stochastic logistic equation, Appl. Math. Lett. 26 (2013) 601-606.
31.M.Liu, K.Wang. Dynamics of a two-prey one-predator system in random environments, J. Nonlinear Sci. 23 (2013) 751-775.
32.M.Liu, K.Wang. Dynamics of a Leslie-Gower Holling-type II predator-prey system with Levy jumps, Nonlinear Anal.85 (2013) 204–213.
33.M.Liu, K.Wang. Stochastic differential equations with multi-Markovian switching, J. Appl. Math. (2013), doi:10.1155/2013/357869
34.
35.M.Liu, K.Wang. Dynamics of a non-autonomous stochastic Gilpin-Ayala model, J. Appl. Math. Comput. 43 (2013) 351-368.
36.M.Liu, K.Wang.Persistence and extinction of a non-autonomous Logistic equation with random perturbation,Electron. J. Differential Equations, Vol. 2013 (2013), No. 99, pp. 1-13.
37.M.Liu, K.Wang.Dynamics and simulations of a logistic model with impulsive perturbations in a random environment, Math. Comput. Simulation92 (2013) 53-75.
38.M.Liu, K.Wang. Persistence and extinction of a stochastic single-species population model in a polluted environment with impulsive toxicant input, Electron. J. Differential Equations2013 (230)(2013)1-13.
39.M.Liu,Analysis of stochastic delay predator-prey system with impulsive toxicant input in polluted environments, Abstr. Appl. Anal. (2013), doi:10.1155/2013/139216.
40.M.Liu,Dynamics of a stochastic Lotka-Volterra model with regime switching, J. Appl. Math. Comput. 45(2014) 327-349.
41.M.Liu, K.Wang. Stochastic Lotka-Volterra systems with Lévy noise,J. Math. Anal. Appl. 410(2014) 750-763.
42.M.Liu, C.Bai, Global asymptotic stability of a stochastic delayed predator-prey system with Beddington-DeAngelis functional response. Appl. Math. Comput. 226 (2014) 581--588.
43.M.Liu, C.Bai, A remark on stochastic Logistic model with diffusion. Appl. Math. Comput. 228 (2014) 141–146.
44.M.Liu, C.Bai, On a stochastic delayed predator-prey model with Lévy jumps. Appl. Math. Comput.228 (2014)563–570.
45.M.Liu, C.Bai, K.Wang,Asymptotic stability of a two-group stochastic SEIR model with infinite delays.Commun. Nonlinear Sci. Numer. Simulat (2014), doi:10.1016/j.cnsns.2014.02.025.
46.M.Liu, C.Bai, Optimal harvesting policy for a stochastic predator-prey model. Appl. Math. Lett. 34 (2014) 22-26.
47.G.Hu, M.Liu, K.Wang. The asymptotic behaviours of an epidemic model with two correlated stochastic perturbations. Appl. Math. Comput. 218 (2012) 10520–10532.
48.W.Li, M.Liu, K.Wang. A generalization of Ito's formula and the stability of stochastic Volterra integral equations.J. Appl. Math. (2012), Article ID 292740.
49.H.Qiu, M.Liu, K.Wang, Dynamics of a stochastic predator-prey system with Beddington- DAngelis functional response, Appl. Math. Comput. 219 (2012) 2303-2312.
50.J.Lv, K.Wang, M.Liu, Dynamical properties of a stochastic two-species Schoener's competitive model. Int. J. Biomath. 5 (2012)125003
51.X.Zou, K.Wang, M.Liu, Can protection zone potentially strengthen protective effects in random environments? Appl. Math. Comput. 231 (2014) 26-38.
52.M.Deng, M.Liu, C.Bai,Dynamics of a stochastic delayed competitive model with impulsive toxicant input in polluted environments,Abstr. Appl. Anal. (2014), doi:10.1155/2014/634871.