熱敏電阻

溫度敏感元件

熱敏電阻器是敏感元件的一類,按照溫度係數不同分為正溫度係數熱敏電阻器(PTC)和負溫度係數熱敏電阻器(NTC)。熱敏電阻在環境溫度相同時,動作時間隨著電流的增加而急劇縮短;熱敏電阻在環境溫度相對較高時具有更短的動作時間和較小的維持電流及動作電流。熱敏電阻器的典型特點是對溫度敏感,不同的溫度下表現出不同的電阻值。正溫度係數熱敏電阻器(PTC)在溫度越高時電阻值越大,負溫度係數熱敏電阻器(NTC)在溫度越高時電阻值越低,它們同屬於半導體器件。但需要注意的是熱敏電阻在進出口環節不屬於稅目85.41項下的半導體器件。

熱敏電徠阻,是一種物理學學科的一種專有名詞。

特點


熱敏電阻
熱敏電阻
徠熱敏電阻的主要特點是:
1.靈敏度較高,其電阻溫度係數要比金屬大10~100倍以上,能檢測出10-6℃的溫度變化;
2.工作溫度範圍寬,常溫器件適用於-55℃~315℃,高溫器件適用溫度高於315℃(目前最高可達到2000℃),低溫器件適用於-273℃~-55℃;
3.體積小,能夠測量其他溫度計無法測量的空隙、腔體及生物體內血管的溫度;
4.使用方便,電阻值可在0.1~100kΩ間任意選擇;
5.易加工成複雜的形狀,可大批量生產;
6.穩定性好、過載能力強。

工作原理


熱敏電阻將長期處於不動作狀態;當環境溫度和電流處於c區時,熱敏電阻的散熱功率與發熱功率接近,因而可能動作也可能不動作。
1、ptc效應是一種材料具有ptc(positive temperature coefficient)效應,即正溫度係數效應,僅指此材料的電阻會隨溫度的升高而增加。如大多數金屬材料都具有ptc效應。在這些材料中,ptc效應表現為電阻隨溫度增加而線性增加,這就是通常所說的線性ptc效應。
2、非線性ptc效應經過相變的材料會呈現出電阻沿狹窄溫度範圍內急劇增加幾個至十幾個數量級的現象,即非線性ptc效應,相當多種類型的導電聚合體會呈現出這種效應,如高分子ptc熱敏電阻。這些導電聚合體對於製造過電流保護裝置來說非常有用。
3、高分子ptc熱敏電阻用於過流保護高分子ptc熱敏電阻又經常被人們稱為自恢復保險絲(下面簡稱為熱敏電阻),由於具有獨特的正溫度係數電阻特性,因而極為適合用作過流保護器件。熱敏電阻的使用方法像普通保險絲一樣,是串聯在電路中使用。

基本特性


溫度特性
溫度特性
熱敏電阻的電阻-溫度特性可近似地用下式表示:R=R0exp{B(1/T-1/T0)}:R:溫度T(K)時的電阻值、Ro:溫度T0、(K)時的電阻值、B:B值、*T(K)=t(ºC)+273.15。實際上,熱敏電阻的B值並非是恆定的,其變化大小因材料構成而異,最大甚至可達5K/°C。因此在較大的溫度範圍內應用式1時,將與實測值之間存在一定誤差。此處,若將式1中的B值用式2所示的作為溫度的函數計算時,則可降低與實測值之間的誤差,可認為近似相等。
BT=CT2+DT+E,上式中,C、D、E為常數。另外,因生產條件不同造成的B值的波動會引起常數E發生變化,但常數C、D不變。因此,在探討B值的波動量時,只需考慮常數E即可。常數C、D、E的計算,常數C、D、E可由4點的(溫度、電阻值)數據(T0,R0).(T1,R1).(T2,R2)and(T3,R3),通過式3~6計算。首先由式樣3根據T0和T1,T2,T3的電阻值求出B1,B2,B3,然後代入以下各式樣。
電阻值計算例:試根據電阻-溫度特性表,求25°C時的電阻值為5(kΩ),B值偏差為50(K)的熱敏電阻在10°C~30°C的電阻值。步驟(1)根據電阻-溫度特性表,求常數C、D、E。To=25+273.15T1=10+273.15T2=20+273.15T3=30+273.15(2)代入BT=CT2+DT+E+50,求BT。(3)將數值代入R=5exp {(BT1/T-1/298.15)},求R。*T:10+273.15~30+273.15。

技術參數


熱敏電阻
熱敏電阻
1.標稱阻值Rc:一般指環境溫度為25℃時熱敏電阻器的實際電阻值。
2.實際阻值RT:在一定的溫度條件下所測得的電阻值。
3.材料常數:它是一個描述熱敏電阻材料物理特性的參數,也是熱靈敏度指標,B值越大,表示熱敏電阻器的靈敏度越高。應注意的是,在實際工作時,B值並非一個常數,而是隨溫度的升高略有增加。
4.電阻溫度係數αT:它表示溫度變化1℃時的阻值變化率,單位為%/℃。
5.時間常數τ:熱敏電阻器是有熱慣性的,時間常數,就是一個描述熱敏電阻器熱慣性的參數。它的定義為,在無功耗的狀態下,當環境溫度由一個特定溫度向另一個特定溫度突然改變時,熱敏電阻體的溫度變化了兩個特定溫度之差的63.2%所需的時間。τ越小,表明熱敏電阻器的熱慣性越小。
6.額定功率PM:在規定的技術條件下,熱敏電阻器長期連續負載所允許的耗散功率。在實際使用時不得超過額定功率。若熱敏電阻器工作的環境溫度超過25℃,則必須相應降低其負載。
7.額定工作電流IM:熱敏電阻器在工作狀態下規定的名義電流值。
8.測量功率Pc:在規定的環境溫度下,熱敏電阻體受測試電流加熱而引起的阻值變化不超過0.1%時所消耗的電功率。
熱敏電阻
熱敏電阻
9.最大電壓:對於NTC熱敏電阻器,是指在規定的環境溫度下,不使熱敏電阻器引起熱失控所允許連續施加的最大直流電壓;對於PTC熱敏電阻器,是指在規定的環境溫度和靜止空氣中,允許連續施加到熱敏電阻器上並保證熱敏電阻器正常工作在PTC特性部分的最大直流電壓。
10.最高工作溫度Tmax:在規定的技術條件下,熱敏電阻器長期連續工作所允許的最高溫度。
11.開關溫度tb:PTC熱敏電阻器的電阻值開始發生躍增時的溫度。
12.耗散係數H:溫度增加1℃時,熱敏電阻器所耗散的功率,單位為mW/℃。

材料分類


熱敏材料一般可分為半導體類、金屬類和合金類三類,現分別簡述如下。

半導體材料

這類材料有單晶半導體、多晶半導體、玻璃半導體、有機半導體以及金屬氧化物等。它們均具有非常大的電阻溫度係數和高的龜阻率,用其製成的感測器的靈敏度也相當高。按電阻溫度係數也可分為負電阻溫度係數材料和正電阻溫度係數材料。在有限的溫度範圍內,負電阻溫度係數材料a可達-6*10-2/℃,正電阻溫度係數材料a可高達-60*10-2/℃以上。如飲酸鋇陶瓷就是一種理想的正電阻溫度係數的半導體材料。上述兩種材料均廣泛用於溫度測量、溫度控制、溫度補瞬、開關電路、過載保護以及時間延遲等方面,如分別用子製作熱敏電阻溫度計、熱敏電阻開關和熱敏電阻溫度計、熱敏電阻開關和熱敏電阻延遲繼電錯等。
這類材料由於電阻和流度呈指數關係,因此測溫範圍狹窄、均勻性也差。.

金屬材料

此類材料作為熱電阻測溫、限流器以及自動恆溫加熱元件均有較為廣泛的應用。如鉑電阻溫度計、鎳電阻溫度計、銅電阻溫度計等。其中鉑側溫感測器在各種介質中(包括腐蝕性介質),表現出明顯的高精度和高穩定的特徵。但是,由於鉑的稀缺和價格昂貴而使它們的廣泛應用受到一定的限制。銅測溫感測器較便宜,但在腐蝕性介質中長期使用,可導致靜態特性與阻值發生明顯變化。最近有資料報導,銅測溫感測器可在空氣介質中-60~180℃溫度範圍使用。但是,國外為了在-60~180℃長期地測量溫度和在250℃短期測量溫度,普遍大量使用著鎳測溫感測器,並認為鎳是一種較理想的材料,因為它們具有高的靈敏度、滿意的重現性和穩定性。

合金材料

合金熱敏電阻材料亦稱熱敏電阻合金。這種合金具有較高的電阻率,並且電阻值隨溫度的變化較為敏感,是一種製造溫敏感測器的良好材料。作為溫敏感測器的熱敏電阻合金性能要求如下:(1)足夠大的電阻率;(2)相當高的電阻溫度係數;(3)具有接近於實驗材料線膨脹係數;(4)小的應變靈敏係數;(5)在工作溫度區間加熱和冷卻時,電阻溫度曲線應有良好的重複性。

分類


正溫度係數熱敏電阻PTC

熱敏電阻
熱敏電阻
正溫度係數熱敏電阻PTC(PositiveTemperatureCoeffiCient)是指在某一溫度下電阻急劇增加、具有正溫度係數的熱敏電阻現象或材料,可專門用作恆定溫度感測器.該材料是以BaTiO3或SrTiO3或PbTiO3為主要成分的燒結體,其中摻入微量的Nb、Ta、Bi、Sb、Y、La等氧化物進行原子價控制而使之半導化,常將這種半導體化的BaTiO3等材料簡稱為半導(體)瓷;同時還添加增大其正電阻溫度係數的Mn、Fe、Cu、Cr的氧化物和起其他作用的添加物,採用一般陶瓷工藝成形、高溫燒結而使鈦酸鉑等及其固溶體半導化,從而得到正特性的熱敏電阻材料.其溫度係數及居里點溫度隨組分及燒結條件(尤其是冷卻溫度)不同而變化。
鈦酸鋇晶體屬於鈣鈦礦型結構,是一種鐵電材料,純鈦酸鋇是一種絕緣材料.在鈦酸鋇材料中加入微量稀土元素,進行適當熱處理后,在居里溫度附近,電阻率陡增幾個數量級,產生PTC效應,此效應與BaTiO3晶體的鐵電性及其在居里溫度附近材料的相變有關.鈦酸鋇半導瓷是一種多晶材料,晶粒之間存在著晶粒間界面.該半導瓷當達到某一特定溫度或電壓,晶體粒界就發生變化,從而電阻急劇變化。
鈦酸鋇半導瓷的PTC效應起因於粒界(晶粒間界).對於導電電子來說,晶粒間界面相當於一個勢壘.當溫度低時,由於鈦酸鋇內電場的作用,導致電子極容易越過勢壘,則電阻值較小.當溫度升高到居里點溫度(即臨界溫度)附近時,內電場受到破壞,它不能幫助導電電子越過勢壘.這相當於勢壘升高,電阻值突然增大,產生PTC效應.鈦酸鋇半導瓷的PTC效應的物理模型有海望表面勢壘模型、丹尼爾斯等人的鋇缺位模型和疊加勢壘模型,它們分別從不同方面對PTC效應作出了合理解釋。
實驗表明,在工作溫度範圍內,PTC熱敏電阻的電阻-溫度特性可近似用實驗公式表示:
RT=RT0expBp(T-T0)
熱敏電阻
熱敏電阻
式中RT、RT0表示溫度為T、T0時電阻值,Bp為該種材料的材料常數。
PTC效應起源於陶瓷的粒界和粒界間析出相的性質,並隨雜質種類、濃度、燒結條件等而產生顯著變化.最近,進入實用化的熱敏電阻中有利用矽片的硅溫度敏感元件,這是體型小且精度高的PTC熱敏電阻,由n型硅構成,因其中的雜質產生的電子散射隨溫度上升而增加,從而電阻增加。
PTC熱敏電阻於1950年出現,隨後1954年出現了以鈦酸鋇為主要材料的PTC熱敏電阻。PTC熱敏電阻在工業上可用作溫度的測量與控制,也用於汽車某部位的溫度檢測與調節,還大量用於民用設備,如控制瞬間開水器的水溫、空調器與冷庫的溫度,利用本身加熱作氣體分析和風速機等方面.下面簡介一例對加熱器、馬達、變壓器、大功率晶體管等電器的加熱和過熱保護方面的應用。
PTC熱敏電阻除用作加熱元件外,同時還能起到“開關”的作用,兼有敏感元件、加熱器和開關三種功能,稱之為“熱敏開關”.電流通過元件后引起溫度升高,即發熱體的溫度上升,當超過居里點溫度后,電阻增加,從而限制電流增加,於是電流的下降導致元件溫度降低,電阻值的減小又使電路電流增加,元件溫度升高,周而復始,因此具有使溫度保持在特定範圍的功能,又起到開關作用.利用這種阻溫特性做成加熱源,作為加熱元件應用的有暖風器電烙鐵、烘衣櫃、空調等,還可對電器起到過熱保護作用。

負溫度係數熱敏電阻NTC

熱敏電阻
熱敏電阻
負溫度係數熱敏電阻NTC(NegativeTemperatureCoeffiCient)是指隨溫度上升電阻呈指數關係減小、具有負溫度係數的熱敏電阻現象和材料.該材料是利用錳、銅、硅、鈷、鐵、鎳、鋅等兩種或兩種以上的金屬氧化物進行充分混合、成型、燒結等工藝而成的半導體陶瓷,可製成具有負溫度係數(NTC)的熱敏電阻.其電阻率和材料常數隨材料成分比例、燒結氣氛、燒結溫度和結構狀態不同而變化.現在還出現了以碳化硅、硒化錫、氮化鉭等為代表的非氧化物系NTC熱敏電阻材料。
NTC熱敏半導瓷大多是尖晶石結構或其他結構的氧化物陶瓷,具有負的溫度係數,電阻值可近似表示為:
Rt=RT*EXP(Bn*(1/T-1/T0)
式中RT、RT0分別為溫度T、T0時的電阻值,Bn為材料常數.陶瓷晶粒本身由於溫度變化而使電阻率發生變化,這是由半導體特性決定的.
NTC熱敏電阻器的發展經歷了漫長的階段.1834年,科學家首次發現了硫化銀有負溫度係數的特性。1930年,科學家發現氧化亞銅-氧化銅也具有負溫度係數的性能,並將之成功地運用在航空儀器的溫度補償電路中。隨後,由於晶體管技術的不斷發展,熱敏電阻器的研究取得重大進展。1960年研製出了NTC熱敏電阻器.NTC熱敏電阻器廣泛用於測溫、控溫、溫度補償等方面。下面介紹一個溫度測量的應用實例。
它的測量範圍一般為-10~+300℃,也可做到-200~+10℃,甚至可用於+300~+1200℃環境中作測溫用.RT為NTC熱敏電阻器;R2和R3是電橋平衡電阻;R1為起始電阻;R4為滿刻度電阻,校驗表頭,也稱校驗電阻;R7、R8和W為分壓電阻,為電橋提供一個穩定的直流電源.R6與表頭(微安表)串聯,起修正表頭刻度和限制流經表頭的電流的作用。R5與表頭並聯,起保護作用.在不平衡電橋臂(即R1、RT)接入一隻熱敏元件RT作溫度感測探頭。由於熱敏電阻器的阻值隨溫度的變化而變化,因而使接在電橋對角線間的表頭指示也相應變化.這就是熱敏電阻器溫度計的工作原理。
熱敏電阻器溫度計的精度可以達到0.1℃,感溫時間可少至10s以下.它不僅適用於糧倉測溫儀,同時也可應用於食品儲存、醫藥衛生、科學種田、海洋、深井、高空、冰川等方面的溫度測量。

臨界溫度熱敏電阻CTR

熱敏電阻
熱敏電阻
臨界溫度熱敏電阻CTR(CritiCalTemperatureResistor)具有負電阻突變特性,在某一溫度下,電阻值隨溫度的增加急劇減小,具有很大的負溫度係數.構成材料是釩、鋇、鍶、磷等元素氧化物的混合燒結體,是半玻璃狀的半導體,也稱CTR為玻璃態熱敏電阻.驟變溫度隨添加鍺、鎢、鉬等的氧化物而變.這是由於不同雜質的摻入,使氧化釩的晶格間隔不同造成的.若在適當的還原氣氛中五氧化二釩變成二氧化釩,則電阻急變溫度變大;若進一步還原為三氧化二釩,則急變消失.產生電阻急變的溫度對應於半玻璃半導體物性急變的位置,因此產生半導體-金屬相移.CTR能夠作為控溫報警等應用。
熱敏電阻的理論研究和應用開發已取得了引人注目的成果.隨著高、精、尖科技的應用,對熱敏電阻的導電機理和應用的更深層次的探索,以及對性能優良的新材料的深入研究,將會取得迅速發展。

檢測


檢測時,用萬用表歐姆檔(視標稱電阻值確定檔位,一般為R×1擋),具體可分兩步操作:首先常溫檢測(室內溫度接近25℃),用鱷魚夾代替表筆分別夾住PTC熱敏電阻的兩引腳測出其實際阻值,並與標稱阻值相對比,二者相差在±2Ω內即為正常。實際阻值若與標稱阻值相差過大,則說明其性能不良或已損壞。其次加溫檢測,在常溫測試正常的基礎上,即可進行第二步測試—加溫檢測,將一熱源(例如電烙鐵)靠近熱敏電阻對其加熱,觀察萬用表示數,此時如看到萬用示數隨溫度的升高而改變,這表明電阻值在逐漸改變(負溫度係數熱敏電阻器NTC阻值會變小,正溫度係數熱敏電阻器PTC阻值會變大),當阻值改變到一定數值時顯示數據會逐漸穩定,說明熱敏電阻正常,若阻值無變化,說明其性能變劣,不能繼續使用。
測試時應注意以下幾點:(1)Rt是生產廠家在環境溫度為25℃時所測得的,所以用萬用表測量Rt時,亦應在環境溫度接近25℃時進行,以保證測試的可信度。(2)測量功率不得超過規定值,以免電流熱效應引起測量誤差。(3)注意正確操作。測試時,不要用手捏住熱敏電阻體,以防止人體溫度對測試產生影響。(4)注意不要使熱源與PTC熱敏電阻靠得過近或直接接觸熱敏電阻,以防止將其燙壞。

應用


熱敏電阻
熱敏電阻
熱敏電阻也可作為電子線路元件用於儀錶線路溫度補償和溫差電偶冷端溫度補償等。利用NTC熱敏電阻的自熱特性可實現自動增益控制,構成RC振蕩器穩幅電路,延遲電路和保護電路。
在自熱溫度遠大於環境溫度時阻值還與環境的散熱條件有關,因此在流速計、流量計、氣體分析儀、熱導分析中常利用熱敏電阻這一特性,製成專用的檢測元件。PTC熱敏電阻主要用於電器設備的過熱保護、無觸點繼電器、恆溫、自動增益控制、電機啟動、時間延遲、彩色電視自動消磁、火災報警和溫度補償等方面。

主要缺點


熱敏電阻
熱敏電阻
1.阻值與溫度的關係非線性嚴重;
2.元件的一致性差,互換性差;
3.元件易老化,穩定性較差;
4.除特殊高溫熱敏電阻外,絕大多數熱敏電阻僅適合0~150℃範圍,使用時必須注意。

問題


如果您打算在整個溫度範圍內均使用熱敏電阻溫度感測器件,那麼該器件的設計工作會頗具挑戰性。熱敏電阻通常為一款高阻抗、電阻性器件,因此當您需要將熱敏電阻的阻值轉換為電壓值時,該器件可以簡化其中的一個介面問題。然而更具挑戰性的介面問題是,如何利用線性ADC以數字形式捕獲熱敏電阻的非線性行為。
“熱敏電阻”一詞源於對“熱度敏感的電阻”這一描述的概括。熱敏電阻包括兩種基本的類型,分別為正溫度係數熱敏電阻和負溫度係數熱敏電阻。負溫度係數熱敏電阻非常適用於高精度溫度測量。要確定熱敏電阻周圍的溫度,您可以藉助Steinhart-Hart公式:T=1/(A0+A1(lnRT)+A3(lnRT3))來實現。其中,T為開氏溫度;RT為熱敏電阻在溫度T時的阻值;而A0、A1和A3則是由熱敏電阻生產廠商提供的常數。
熱敏電阻的阻值會隨著溫度的改變而改變,而這種改變是非線性的,Steinhart-Hart公式表明了這一點。在進行溫度測量時,需要驅動一個通過熱敏電阻的參考電流,以創建一個等效電壓,該等效電壓具有非線性的響應。您可以使用配備在微控制器上的參照表,嘗試對熱敏電阻的非線性響應進行補償。即使您可以在微控制器固件上運行此類演演算法,但您還是需要一個高精度轉換器用於在出現極端值溫度時進行數據捕獲。
另一種方法是,您可以在數字化之前使用“硬體線性化”技術和一個較低精度的ADC。(Figure1)其中一種技術是將一個電阻RSER與熱敏電阻RTHERM以及參考電壓或電源進行串聯(見圖1)。將PGA(可編程增益放大器)設置為1V/V,但在這樣的電路中,一個10位精度的ADC只能感應很有限的溫度範圍(大約±25°C)。
熱敏電阻
熱敏電阻
Figure1,請注意,在圖1中對高溫區沒能解析。但如果在這些溫度值下增加PGA的增益,就可以將PGA的輸出信號控制在一定範圍內,在此範圍內ADC能夠提供可靠地轉換,從而對熱敏電阻的溫度進行識別。
微控制器固件的溫度感測演演算法可讀取10位精度的ADC數字值,並將其傳送到PGA滯后軟體程序。PGA滯后程序會校驗PGA增益設置,並將ADC數字值與圖1顯示的電壓節點的值進行比較。如果ADC輸出超過了電壓節點的值,則微控制器會將PGA增益設置到下一個較高或較低的增益設定值上。如果有必要,微控制器會再次獲取一個新的ADC值。然後PGA增益和ADC值會被傳送到一個微控制器分段線性內插程序。
從非線性的熱敏電阻上獲取數據有時候會被看作是一項“不可能實現的任務”。您可以將一個串聯電阻、一個微控制器、一個10位ADC以及一個PGA合理的配合使用,以解決非線性熱敏電阻在超過±25°C溫度以後所帶來的測量難題。

區別


1.熱敏電阻符號是PTC,阻值隨溫度的變化而變化,有正溫度型的負溫度型;
2.壓敏電阻阻值隨壓力的變化而變化,高,中,低壓壓敏電阻;
產品主要有MYN型,MY31型以及MYG型三大型號。

熱敏電阻合金


熱敏電阻合金已開始日益廣泛地用於溫度的監測和控制。如在環境監測、食品的長期儲存、生物工程以及尖端軍事工程等方面都獲得了廣泛的應用。
熱敏電阻合金一般均具有較高的電阻率和電阻溫度係數,因此可以製成小型化的高靈敏度的測溫感測器。如箔式應變片式測溫感測器就是一種理想的結構件溫度測景元件。此外熱敏電阻合金在高性能飛機的大氣總溫感測器和大型客機溫度感測器中也獲得了一定的應用。可見,熱敏電阻合金的優越性將日趨顯著。