巨磁電阻
巨磁電阻
巨磁阻效應(Giant Magnetoresistance,縮寫:GMR)是一種量子力學和凝聚徠體物理學現象,磁阻效應的一種,可以在磁性材料和非磁性材料相間的薄膜層(幾個納米厚)結構中觀察到。2007年諾貝爾物理學獎被授予發現巨磁阻效應(GMR)的彼得·格林貝格和艾爾伯·費爾。巨磁電阻就是電阻值對磁場變化巨敏感的一種電阻材料。
巨磁電阻結構物質的電阻值與鐵磁性材料薄膜層的磁化方向有關,兩層磁性材料磁化方向相反情況下的電阻值,明顯大於磁化方向相同時的電阻值,電阻在很弱的外加磁場下具有很大的變化量。巨磁阻效應被成功地運用在硬碟生產上,具有重要的商業應用價值。
圖1.巨磁阻效應示意圖
如右圖所示,左面和右面的材料結構相同,兩側是磁性材料薄膜層(藍色),中間是非磁性材料薄膜層(橘色)。
左面的結構中,兩層磁性材料的磁化方向相同。
•當一束自旋方向與磁性材料磁化方向都相同的電子通過時,電子較容易通過兩層磁性材料,都呈現小電阻。
•當一束自旋方向與磁性材料磁化方向都相反的電子通過時,電子較難通過兩層磁性材料,都呈現大電阻。這是因為電子的自旋方向與材料的磁化方向相反,產生散射,通過的電子數減少,從而使得電流減小。
右面的結構中,兩層磁性材料的磁化方向相反。
•當一束自旋方向與第一層磁性材料磁化方向相同的電子通過時,電子較容易通過,呈現小電阻;但較難通過第二層磁化方向與電子自旋方向相反的磁性材料,呈現大電阻。
•當一束自旋方向與第一層磁性材料磁化方向相反的電子通過時,電子較難通過,呈現大電阻;但較容易通過第二層磁化方向與電子自旋方向相同的磁性材料,呈現小電阻。
巨磁阻效應在1988年由德國於利希研究中心的彼得·格林貝格和巴黎第十一大學的艾爾伯·費爾分別獨立發現的,他們因此共同獲得2007年諾貝爾物理學獎。
格林貝格的研究小組在最初的工作中只是研究了由鐵、鉻、鐵三層材料組成的結構物質,實驗結果顯示電阻下降了1.5%。而費爾的研究小組則研究了由鐵和鉻組成的多層材料,使得電阻下降了50%。
格林貝格和於利希研究中心享有巨磁阻技術的一項專利,他最初提交論文的時間要比費爾略早一些(格林貝格於1988年5月31日,費爾於1988年8月24日),而費爾的文章發表得更早(格林貝格於1989年3月,費爾於1988年11月)。費爾準確地描述了巨磁阻現象背後的物理原理,而格林貝格則迅速看到了巨磁阻效應在技術應用上的重要性。
巨磁阻效應在高密度讀出磁頭、磁存儲元件上有著廣泛的應用。隨著技術的發展,當存儲數據的磁區越來越小,存儲數據密度越來越大,這對讀寫磁頭提出更高的要求。巨磁阻物質中電流的增大與減小,可以定義為邏輯信號的0與1,進而實現對磁性存儲裝置的讀取。巨磁阻物質可以將用磁性方法存儲的數據,以不同大小的電流輸出,並且即使磁場很小,也能輸出足夠的電流變化,以便識別數據,從而大幅度提高了數據存儲的密度。
巨磁阻效應被成功地運用在硬碟生產上。1994年,IBM公司研製成功了巨磁電阻效應的讀出磁頭,將磁碟記錄密度提高了17倍,從而使得磁碟在與光碟的競爭中重新回到領先地位。目前,巨磁阻技術已經成為幾乎所有計算機、數碼相機和MP3播放器等的標準技術。
利用巨磁電阻物質在不同的磁化狀態下具有不同電阻值的特點,還可以製成磁性隨機存儲器(MRAM),其優點是在不通電的情況下可以繼續保留存儲的數據。
除此之外,巨磁阻效應還應用於微弱磁場探測器。
•磁阻效應
•徠超巨磁阻效應