混合型偏微分方程

混合型偏微分方程

簡稱混合型方程。一偏微分方程在所考慮的區域的某一部分上是橢圓型的,在另一部分上是雙曲型的,這些部分由一些曲線(或一些曲面)所分隔,在分界線(面)上方程或者退化為拋物型的,或者是不定義的,這樣的方程稱作混合型方程。

目錄

正文


混合型方程的研究歷史比較短。1923年,義大利F.G.特里科米最先研究了方程(后稱為特里科米方程),它在半平面是橢圓型的,在半平面是雙曲型的,直線是它的蛻型線。對此方程特里科米提出了一種新的邊值問題(后稱為特里科米問題):設區域Ω的邊界由和所組成,其中σ 為以x 軸上二點A與B為端點而在上半平面上的若爾當光滑曲線,Г1和Г2是在下半平面上經過A、B這二點的方程的兩條特徵線,並相交於C點。邊界條件只給在σ和Г1上:在σ上, 在上。該方程在Ω上的正則解,即解在閉域捙上連續,它的一階微商除A與B點外在捙上連續,而在這兩點上微商趨於無窮的階數小於1,二階微商除x軸上的點外在Ω內連續。且假定了曲線σ在A與B點附近滿足特殊的要求。特里科米通過解奇異積分方程問題證明了這個問題解的存在性。自特里科米的工作之後,混合型方程,特別由於它與跨音速、超音速流動理論有著直接聯繫而引起了廣泛的重視,從40年代起不斷有人對它進行研究,基本上在三個方面開展工作:①提出新的邊值問題,並證明解的存在性和惟一性;②尋求新的研究工具和途徑,且不斷減弱在證明可解性時所附加在方程係數和邊界曲線上的限制;③利用混合型方程解決氣體動力學、幾何學和彈塑性力學中的各種問題。
混合型偏微分方程
混合型偏微分方程
美國數學家K.O.弗里德里希斯在50年代末建立了正對稱方程組的理論,在一定意義下統一地處理雙曲、拋物、橢圓以及混合型方程的邊值問題。將此理論應用於混合型方程的研究,不僅得到了一些適定的新的邊值問題,而且也提供了新的研究工具:能量不等式、強弱解一致性和解的可微性等。同時還促進了多個自變數的和非線性的混合型方程的研究。混合型方程的研究還與彈性薄殼無旋理論、幾何曲面變形理論以及其他物理、力學問題等有著廣泛的聯繫。
除上述那種方程外,還有一類方程(方程組),它們是在域的某些點集(包括邊界點)上發生型的蛻化,但在區域上並不同時出現有橢圓型和雙曲型。這類方程(組)被稱為退化方程(組)。退化方程(組)可分為退化拋物型方程、退化橢圓型方程(二者合在一起還稱為具有非負特徵的方程)、退化雙曲型方程(組)等。退化方程(組)在邊界層理論、無旋薄殼理論、滲流理論、擴散過程理論及其他許多物理和力學問題中遇到。混合型方程的研究更促進了對退化橢圓型方程和退化雙曲型方程的深入研究。這類方程(方程組)基本上在兩個緊密聯繫的方向上開展研究:①證明邊值問題的可解性,在此考慮到由於型的蛻化而在問題提法上的改變;②研究解的性質,特別是建立類似於非退化方程的解的性質。