蟲洞
連結兩個遙遠時空的多維空間隧道
時空洞(Wormhole)又稱愛因斯坦-羅森橋,也譯作蛀孔。是宇宙中可能存在的連接兩個不同時空的狹窄隧道。蟲洞是1916年由奧地利物理學家路德維希·弗萊姆首次提出的概念,1930年由愛因斯坦及納森·羅森在研究引力場方程時假設的,認為透過蟲洞可以做瞬時的空間轉移或者做時間旅行。
由阿爾伯特·愛因斯坦提出該理論。簡單地說,“蟲洞”就是連接宇宙遙遠區域間的時空細管。暗物質維持著蟲洞出口的開啟。蟲洞可以把平行宇宙和嬰兒宇宙連接起來,並提供時間旅行的可能性。蟲洞也可能是連接黑洞和白洞的時空隧道,所以也叫"灰道"。
理論上,蟲洞是連結兩個遙遠時空的空間隧道,就像是大海裡面的漩渦,是無處不在但轉瞬即逝的。這些時空漩渦是由星體旋轉和引力作用共同造成的。就像漩渦能夠讓局部水面跟水底離得更近一樣,能夠讓兩個相對距離很遠的局部空間瞬間離得很近。不過有人假想一種奇異物質可以使蟲洞保持張開,也有人假設如果存在一種叫做幻影物質(Phantom matter)的奇異物質的話,因為其同時具有正能量和負質量,因此能創造排斥效應以防止蟲洞關閉。
迄今為止,科學家們還沒有觀察到蟲洞存在的證據。為了與其他種類的蟲洞進行區分,一般通俗所稱“蟲洞”應被稱為“時空洞”。
蟲洞
1963年,紐西蘭數學家羅伊·克爾提出假設,使得“蟲洞”的存在重新獲得了理論支持。和人類一樣,恆星也會經歷生老病死的過程,克爾認為,如果恆星在接近死亡時能夠保持旋轉,就會形成我們在電影中看到的“動態黑洞”。當我們像電影中那樣沿著旋轉軸心將物體發射進入后,若是能夠突破黑洞中心的重力場極限,就會進入所謂的“鏡像宇宙”。《星際穿越》中的宇航員庫珀在黑洞中所處的“超維度”空間,其實就可以被看作是對“鏡像宇宙”的一種解讀。從宇宙進入“鏡像宇宙”,本身就是一次“時空穿越”。
“銀河系蟲洞說”源自在暗物質研究上取得的突破。暗物質是指不與電磁力產生作用、無法通過電磁波的觀測進行研究的物質。與“蟲洞”不同的是,人們已經通過引力效應證實了宇宙中有大量暗物質存在。的里雅斯特國際高等研究院課題組在2013年繪製了一份非常詳細的銀河系暗物質分布圖,將其與最新研究得出的宇宙大爆炸模型結合后,發現銀河系中不僅具備存在“蟲洞”的條件,甚至整個銀河系都可能是個巨大的“蟲洞”。
按照義大利天體物理學家保羅·薩魯奇等人建立的理論模型來看,這樣的假設確實有可能得到證實,而其更大的意義在於,它將促使科學家對暗物質研究進行“更為準確的重新思考”:暗物質是否就是“另一個維度”的存在?或者,它本身就是一個星際交通的運輸系統?
“蟲洞說”目 前仍是一種假設,但科學的進步離不開大膽的假設。人們一度認為物質的最小組成單位是原子,後來又發現了中子和質子。同樣,長久以來,人類也曾認為宇宙是由物質構成的,但暗物質的存在推翻了這一結論。科學假設的意義,就在於擺脫現有束縛,通過不斷地自我否定和懷疑,推進人類對宇宙的了解和自身的進步。正如薩魯奇所言:“在任何情況下,我們都需要問自己,那到底是什麼?”
蟲洞的概念最初產生於對史瓦西解的研究中。理論物理學家在分析白洞解的時候,通過一個阿爾伯特·愛因斯坦的思想實驗,發現宇宙時空自身可以不是平坦的。如果恆星形成了黑洞,那麼時空在史瓦西半徑,也就是視界的地方與原來的時空垂直。在不平坦的宇宙時空中,這種結構就意味著黑洞。
視界內的部分會與宇宙的另一個部分相結合,然後在那裡產生一個洞。這個洞可以是黑洞,也可以是白洞。而這個彎曲的視界,就叫做史瓦西喉,它就是一種特定的蟲洞。
自從在史瓦西解中發現了蟲洞,物理學家們就開始對蟲洞的性質發生了興趣。
蟲洞連接黑洞和白洞,在黑洞與白洞之間通過這個蟲洞(即阿爾伯特·愛因斯坦—羅森橋)被傳送到白洞並且被輻射出去。
蟲洞還可以在宇宙的正常時空中顯現,成為一個突然出現的超時空。理論推出的蟲洞還有許多特性,限於篇幅,這裡不再贅述。
總之,我們對黑洞、白洞和蟲洞的本質了解還很少,它們還是神秘的東西,很多問題仍需要進一步探討。天文學家已經間接地找到了黑洞,但白洞、蟲洞並未真正發現,還只是一個經常出現在科幻作品中的理論名詞。
宇宙中,“宇宙項”幾乎為零。所謂的宇宙項也稱為“真空的能量”,在沒有物質的空間中,能量也同樣存在。
在其內部,這是由愛因斯坦所導入的。宇宙初期的膨脹宇宙,宇宙項是必須的,而且,在基本粒子論里,也認為真空中的能量是自然呈現的。那麼,為何宇宙的宇宙項變為零呢?柯爾曼說明:在爆炸以前的初期宇宙中,蟲洞連接著很多的宇宙,很巧妙地將宇宙項的大小調整為零。結果,由一個宇宙可能產生另一個宇宙,而且,宇宙中也有可能有無數個這種微細的洞穴,它們可通往一個宇宙的過去及未來,或其他的宇宙。
蟲洞的出現,幾乎可以說是和黑洞同時的。
如果你於12:00站在蟲洞的一端(入口),你就會於12:00從蟲洞的另一端(出口)出來。
蟲洞(Wormhole),又稱愛因斯坦-羅森橋,是宇宙中可能存在的連接兩個不同時空的狹窄隧道。
蟲洞
蟲洞連接黑洞和白洞,在黑洞與白洞之間傳送物質。在這裡,蟲洞成為一個阿爾伯特·愛因斯坦—羅森橋,物質在黑洞的奇點處被完全瓦解為基本粒子,然後通過這個蟲洞(即阿爾伯特?愛因斯坦—羅森橋)被傳送到白洞並且被輻射出去。
蟲洞可以作為一個超時空管道還可在宇宙的正常時空中顯現。
蟲洞沒有視界,它只有一個和外界的分界面,蟲洞通過這個分界面進行超時空連接。蟲洞與黑洞、白洞的介面是一個時空管道和兩個時空閉合區的連接,在這裡時空曲率並不是無限大,因而我們可以安全地通過蟲洞,而不被巨大的引力摧毀。
黑洞、白洞、蟲洞仍然是當前宇宙學中“時空與引力篇章”的懸而未解之謎。黑洞是否真實存在,科學家們也只是得到了一些間接的旁證。當前的觀測及理論也給天文學和物理學提出了許多新問題,例如,一顆能形成黑洞的冷恆星,當它坍縮時,其密度已然會超過原子核、核子、中子……,如果再繼續坍縮下去,中子也可能被壓碎。那麼,黑洞中的物質基元究竟是什麼呢?有什麼斥力與引力對抗才使黑洞停留在某一階段而不再繼續坍縮呢?如果沒有斥力,那麼黑洞將無限地坍縮下去,直到體積無窮小,密度無窮大,內部壓力也無窮大,而這卻是物理學理論所不允許的。
如今的宇宙中,“宇宙項”幾乎為零。
物理學家一直認為,蟲洞的引力過大,會毀滅所有進入它的東西,因此不可能用在宇宙旅行之上。但是,假設宇宙中有蟲洞這種物質存在,那麼就可以有一種說法:如果你於12:00站在蟲洞的一端(入口),那你就會於12:00從蟲洞的另一端(出口)出來。
蟲洞(Wormhole),又稱愛因斯坦-羅森橋,是宇宙中可能存在的連接兩個不同時空的狹窄隧道。
蟲洞的自然產生機制有兩種:
其一,是黑洞的強大引力能。
其二,是克爾黑洞的快速旋轉,其倫斯——梯林效應將黑洞周圍的能層中的時空撕開一些小口子。這些小口子在引力能和旋轉能的作用下被擊穿,成為一些十分小的蟲洞。這些蟲洞在黑洞引力能的作用下,可以確定它們的出口在那裡,但是還不可能完全完成,因為量子理論和相對論還沒有完全結合。
蟲洞的出現,幾乎可以說是和黑洞同時的。
蟲洞在史瓦西解中第一次出現,是當物理學家們想到了白洞的時候。他們通過一個愛因斯坦的思想實驗,發現時空可以不是平坦的,而是彎曲的。
我們先來看一個蟲洞的經典作,將物質在黑洞的奇點處被完全瓦解為基本粒子,然後通過這個蟲洞(即愛因斯坦—羅森橋)被傳送到這個白洞的所在,並且被輻射出去。
當然,前面說的僅僅是蟲洞作為一個黑洞和白洞之間傳送物質的道路,但是蟲洞的作用遠不只如此。
黑洞和黑洞之間也可以通過蟲洞連接,當然,這種連接無論是如何的將強它還是僅僅是一個連通的“宇宙監獄”,
蟲洞不僅可以作為一個連接洞的工具,它還在宇宙的正常時空中出現,成為一個突然出現在宇宙中的超空間管道,
蟲洞沒有視界,因而我們可以安全地通過蟲洞,而不被巨大的引力所毀。
蟲洞
“瞬間移動”的可能,如同超時空轉換。
隨著科學技術的發展,新的研究發現,“蟲洞”的超強力場可以通過“負能量”來中和,達到穩定“蟲洞”能量場的作用。科學家認為,相對於產生能量的“正物質”,“反物質”也擁有“負質量”,可以吸去周圍所有能量。
像“蟲洞”一樣,“負質量”也曾被認為只存在於理論之中。不過,當前世界上的許多實驗室已經成功地證明了“負質量”能存在於現實世界,並且通過航天器在太空中捕捉到了微量的“負質量”。
據科學家猜測,宇宙中充斥著數以百萬計的“蟲洞”,但很少有直徑超過10萬公里的,而這個寬度正是太空飛船安全航行的最低要求。“負質量”的發現為利用“蟲洞”創造了新的契機,可以使用它去擴大和穩定細小的“蟲洞”。
科學家指出,如果把“負質量”傳送到“蟲洞”中,把“蟲洞”打開,並強化它的結構,使其穩定,就可以使太空飛船通過。
而然,蟲洞只能回到過去。所謂的“瞬間移動”,其實就是利用蟲洞兩點之間的時間差。打個比方說,A點的時間比B點快;而兩點的時間就是水,水只會從高處流到低處;而因為A點的時間比較快,因此A點可以通過蟲洞去B點,因為其中的時間差,所以到達B點時,人會感覺到好像沒有用上多少的時間;同時地,B點無法通過蟲洞到達A點,因為時間的排擠--中間的時間差,造成了時間斷層。至於為什麼A點出發則沒有斷層--還是因為時間差。當從A點出發時,時間是X點;而到達B點時,B點的時間才剛剛是X點,時間可以被完全地銜接起來。而唯一從較慢的時間點前往較快的時間點,只能利用光速。
1、蟲洞的性質是相對論中描述的,用來作為宇宙中的高速火車。
2、蟲洞的第二個重要的性質,也就是量子理論提出的:蟲洞不可能成為一個宇宙的高速火車。
蟲洞的存在,依賴於一種奇異的性質和物質,而這種奇異的性質,就是負能量。只有負能量才可以維持蟲洞的存在,保持蟲洞與外界時空的分解面持續打開。狄拉克在芬克爾斯坦參照系的基礎上,發現了參照系的選擇可以幫助我們更容易或者難地來分析物理問題。同樣的,負能量在狄拉克的另一個參照系中,是非常容易實現的,因為能量的表現形式和觀測物體的速度有關。這個結論在膜規範理論中同樣起到了十分重要的作用。根據參照系的不同,負能量是十分容易實現的。在物體以近光速接近蟲洞的時候,在蟲洞的周圍的能量自然就成為了負的。因而以接近光速的速度可以進入蟲洞,而速度離光速太大,那麼物體是無論如何也不可能進入蟲洞的。這個也就是蟲洞的特殊性質之一。
3、在暴躁的量子理論中,蟲洞的性質又有了十分重要的變化。在黑洞中的蟲洞,也就是史瓦西喉和奇點周圍形成的子宇宙。黑洞周圍的量子真空漲落在黑洞巨大引力的作用下,會被黑洞的引力能“喂”大,成為十分的能量輻射。這種能量會毫不留情地將一切形式的蟲洞摧毀。
在沒有黑洞包圍的蟲洞中,由於同樣的沒有黑洞巨大引力的“餵養”,蟲洞本身也不可能開啟太久。蟲洞有很大幾率被隨機打開,但是有更大的幾率突然消失。蟲洞打開的時間十分短,僅僅是幾個普朗克時間。在如此短的“壽命”中,即使是光也不可能走完蟲洞的一半旅途,而在半路由於蟲洞的消失而在整個時空中消失,成為真正的四維時空組旅行者。
而且,在沒有物體通過蟲洞的時候,蟲洞還比較“長壽”,而一旦有物體進入了蟲洞,如果這個物體是負能量的,那麼還好,蟲洞會被撐開;但是如果物體是正能量的,那麼蟲洞會在自己“自然死亡”以前就“滅亡”掉。而在宇宙中,幾乎無時無刻不存在能量輻射通過宇宙的每一個角落,而這些輻射都是正能量的,因此幾乎可以肯定,在自然情況下是不存在蟲洞的。
4、即使蟲洞存在並且是穩定的,穿過它們也是十分不愉快的。貫穿蟲洞的輻射(來自附近的恆星,宇宙的微波背景等等)將藍移到非常高的頻率。當你試著穿越蟲洞時,你將被這些X射線和伽瑪射線烤焦。
物理學家一直認為,蟲洞的引力過大,會毀滅所有進入它的東西,因此不可能用在宇宙旅行之上。黑洞和黑洞之間也可以通過蟲洞連接。
愛因斯坦-羅森橋
愛因斯坦和另一位著名的物理學家內森·羅森(Nathan Rosen)一起進行了蟲洞理論研究工作。1935年,他們提出了一種連接兩個黑洞的時空通道的概念,即愛因斯坦-羅森橋。但是要想穿越這條時空隧道,就必須要求這條隧道兩端的黑洞是某一特定的類型。傳統定義中的黑洞具有極強的引力效應,物質一旦在其作用下穿越一道所謂“視界”的終極界限便將萬劫不復,永遠無法逃離。而在愛因斯坦和羅森的理論中,物質將可以穿過這條通道的兩端。
1955年,曾經提出黑洞概念的美國物理學家約翰·惠勒(John Wheeler)證明有可能將宇宙中的兩處不同區域連接起來,並以此實現高速的星際旅行。他正式採用了“蟲洞”這一名字。但他的這一蟲洞版本具有非常不穩定的缺陷。即便是讓一顆光子進入其內部都將立即引起黑洞視界的形成並導致蟲洞關閉。
將這一僵局進一步向前推動的是一位美國的行星天文學家卡爾·薩根。在他的科幻小說《超時空接觸》中,他需要構思一種在科學上能站得住腳的高速星際旅行方式,以便讓他筆下的女英雄實現在時空中的穿梭。薩根向加州理工學院理論物理學家基普·索恩(Kip Thorne)求助,後者很快意識到蟲洞的概念可以幫助解決這一問題。1987年,索恩和他的研究生麥克·莫里斯(Michael Morris)和尤里·約瑟夫(Uri Yertsever)一起,提出了一種可以實現星際旅行的蟲洞方案。他們證明,如果能找到某種具有負能量的物質,那麼只要使用足夠多的這種物質,其負能量性質將產生對引力的自然對抗,如此便能保持蟲洞的開放。由於這樣的負能量實在太微不足道,根本無法用於維持蟲洞的開放。事實上,索恩和他的合作者們提出的蟲洞開放策略將需要巨大的負能量來源,其總量幾乎將相當於一顆普通恆星在一年中釋放出的能量中的很大一部分。
到2012年為止,所有的蟲洞理論提出的基礎都是以愛因斯坦的廣義相對論不謬為前提的。但事實上這樣的前提或許並不是牢固的。首先,這一理論在黑洞視界範圍內將會失效,並且也無法用於解釋宇宙極早期的現象。而描述微觀世界的量子理論卻取得了巨大的成功,它幾乎可以解釋一切事物,從地面為什麼是堅硬的,到太陽為什麼可以發光。很多研究者都認為,愛因斯坦的相對論一定是某種更加深刻理論的一種近似。
人們對於量子理論的最初探索出現在1921年。當時物理學家西奧多·卡魯扎(Theodor Kaluza)和奧斯卡·克萊(Oskar Klein)受到愛因斯坦理論的啟發,兩人進一步發展了這一理論,並證明引力和電磁力實際上都可以用一個五維空間的彎曲來進行解釋。在那之後,弦理論更是指出,自然界中的所有4種基本力都可以用10緯空間的彎曲來進行解釋。但當維度超過四維時,這一強大的理論將禁止蟲洞的存在,除非有強大的負能量可以維持它的開放狀態。
如果更高的維度處於捲縮狀態,它們可以變得非常微小,這也就解釋了為何我們通常無法直接感受到它們存在的原因。而讓弦理論中涉及的另外6個維度捲縮的過程又會形成幾個新的力場。和廣義相對論將引力概括為時空的彎曲類似,DEGB理論中的引力同樣有賴於時空和更高維度上的彎曲。將這種理論應用於引力方程之後,克萊豪斯和他的同事們找到了有關蟲洞的一個解。它不需要任何負能量來維持自身的開放,或者更加準確的說,是根本不需要任何物質來維持自身的開放。2002年,俄羅斯莫斯科引力和基礎測量中心的克里爾·布羅尼科夫(Kirill Bronnikov)和韓國首爾梨花女子大學的金宋萬(音譯:Sung-Won Kim)共同提出了一種新的可能性,他們提出了一種不需要負能量物質維持開放的蟲洞方案。他們基於膜理論原理提出了一系列新的蟲洞備選方案。膜理論認為我們所處的世界是一座四維孤島,它漂浮在更高的維度之海中。我們不需要任何幽靈般的物質就可以讓蟲洞保持任意大小。這一理論體系最簡略的形式名為DEGB理論。
2012年3月,一個由德國和希臘科學家組成的國際小組證明,製造出一個蟲洞或許並不需要用到任何這種奇異的負能量物質,蟲洞不需要任何東西就可保持開放。這項發現開啟了一項潛在的可能性,那就是我們或許將來有朝一日會在太空中找到一個蟲洞。
蟲洞
蟲洞的經典作用:連接黑洞和白洞,成為一個愛因斯坦—羅森橋,將物質在黑洞的奇點處被完全瓦解為基本粒子,然後通過這個蟲洞(即愛因斯坦——羅森橋)被傳送到這個白洞的所在,並且被輻射出去。
除了蟲洞作為一個黑洞和白洞之間傳送物質的道路,黑洞和黑洞之間也可以通過蟲洞連接,當然,這種連接無論是如何的將強,它還是僅僅是一個連通的“宇宙監獄”。
蟲洞不僅可以作為一個連接洞的工具,它還開宇宙的正常時空中出現,成為一個突然出現在宇宙中的超空間管道。
卡牌遊戲中的蟲洞
一是空間中的隧道,它就像一個球體,你要是沿球面走就遠了。但如果你走的是球里的一條直徑就近了,蟲洞就是直徑!
二是黑洞與白洞的聯繫。黑洞可以產生一個勢阱,白洞則可以產生一個反勢阱。宇宙是三維的,將勢阱看作第四維,那麼蟲洞就是連接勢阱和反勢阱的第五維。假如畫出宇宙、勢阱、反勢阱和蟲洞的圖像,它就像一個克萊因瓶——瓶口是黑洞,瓶身和瓶頸的交界處是白洞,瓶頸是蟲洞!
三是你說的時間隧道,根據愛因斯坦所說的你可以進行時間旅行,但你只能看,就像看電影,卻無法改變發生的事情,因為時間是線性的,事件就是一個個珠子已經穿好,你無法改變珠子也無法調動順序!
四是周圍以固定方式受力,造成的巨大推力造成的受力空間搬運。比如一段真空在水中,以某種形狀突然受到水的填補,巨大的水壓所造成的壓力將其中的東西推出所形成的現象。或許這是可以通過借用自然中所擁有的力所可以實現的,就可借水流之力發電一樣,不過是再拐個彎。
我們討論的都是普通“完美”黑洞。細節上,我們討論的黑洞都不旋轉也沒有電荷。如果我們考慮黑洞旋轉同時/或者帶有電荷,事情會變的更複雜。特別的是,你有可能跳進這樣的黑洞而不撞到奇點。結果是,旋轉的或帶有電荷的黑洞內部連接一個相應的白洞,你可以跳進黑洞而從白洞中跳出來。這樣的黑洞和白洞的組合叫做蟲洞!
白洞有可能離黑洞十分遠;實際上它甚至有可能在一個“不同的宇宙”--那就是,一個時空區域,除了蟲洞本身,完全和我們在的區域沒有連接。一個位置方便的蟲洞會給我們一個方便和快捷的方法去旅行很長一段距離,甚至旅行到另一個宇宙。或許蟲洞的出口停在過去,這樣你可以通過它而逆著時間旅行。總的來說,它們聽起來很酷。
但在你認定那個理論正確而打算去尋找它們之前,你應該知道兩件事。首先,蟲洞幾乎不存在。正如我們上面我們說到白洞時,只因為它們是方程組有效的數學解並不表明它們在自然中存在。特別的,當黑洞由普通物質坍塌形成(包括我們認為存在的所有黑洞)並不會形成蟲洞。如果你掉進其中的一個,你並不會從什麼地方跳出來。你會撞到奇點,那是你唯一可去的地方!
還有,即使形成了一個蟲洞,它也被認為是不穩定的。即使是很小的擾動(包括你嘗試穿過它的擾動)都會導致它坍塌。
在史瓦西發現了史瓦西黑洞以後,理論物理學家們對愛因斯坦常方程的史瓦西解進行了幾乎半個世紀的探索。包括上面說過的克爾解、雷斯勒——諾斯特朗姆解以及後來的紐曼解,都是圍繞史瓦西的解研究出來的成果。我在這裡將介紹給大家的蟲洞,也是史瓦西的後代。
當物理學家們想到了白洞的時候,蟲洞第一次在史瓦西解中出現。物理學家們通過一個愛因斯坦的思想實驗,發現時空可以是彎曲的。在這種情況下,我們會十分驚奇的發現,如果恆星形成了黑洞,那麼時空在史瓦西半徑,也就是視界的地方是與原來的時空完全垂直的。
自從在史瓦西解中發現了蟲洞,物理學家們就開始對蟲洞的性質感到好奇!
我們先來看一個蟲洞的經典作用:連接黑洞和白洞,成為一個愛因斯坦——羅森橋,將物質在黑洞的奇點處被完全瓦解為基本粒子,然後通過這個蟲洞(即愛因斯坦——羅森橋)被傳送到這個白洞的所在,並且被輻射出去。
蟲洞沒有視界,它有的僅僅是一個和外界的分解面。蟲洞通過這個分解面和超空間連接,但是在這裡時空曲率不是無限大。就好比在一個在平面中一條曲線和另一條曲線相切,在蟲洞的問題中,它就好比是一個四維管道和一個三維的空間相切,在這裡時空曲率不是無限大。因而我們可以安全地通過蟲洞,而不被巨大的引力所摧毀。
天體物理學家認為蟲洞是一種天然的時間機器,維持蟲洞的開放可以使回到過去或者進入未來,當然還沒證據顯示宇宙中存在“宏觀蟲洞,
天體物理學家稱蟲洞可能是一種天然的時間機器,雖然超越蟲洞的行為從沒有出現過,而且蟲洞本身是否真實存在也沒有直接證據證實,只是根據愛因斯坦的廣義相對論預言對這一奇特的時空進行研究。
天體物理學家埃里克·戴維斯認為如果能維持一個蟲洞的連續開放,就可以回到過去或者進入未來世界,但是蟲洞在哪兒?還沒有發現蟲洞在現實宇宙中存在的證據。
奇異外來物質對其知之甚少其中將涉及到量子理論,因此在研究蟲洞之前,必須在蟲洞關閉之前完成時間旅行。
德科學家發現蟲洞 欲打造“銀河”
在遠古的時候,人類探索星空的方式是肉眼,後來開始用望遠鏡,但人類邁向星空的第一步則是在一九五七年那一年,人類發射的第一個航天器終於飛出了我們這個藍色星球的大氣層。十二年後,人類把足跡留在了月球上三年之後,人類向外太陽系發射了先驅者十號深空探測器。一九八三年,先驅者十號飛離了海王星軌道,成為人類發射的第一個飛離太陽系的航天器,從人類發射第一個航天器以來,短短二十幾年的時間裡,齊奧爾科夫斯基所預言的“人類首先將小心翼翼地穿過大氣層,然後再去征服太陽周圍的整個空間”就成為了現實,人類探索星空的步履不可謂不迅速。但是,相對於無盡的星空而言,這種步履依然太過緩慢。率先飛出太陽系的先驅者十號如今正在一片冷寂的空間中滑行著,在滿天的繁星之中,要經過多少年它才能飛臨下一顆恆星呢?答案是兩百萬年!那時它將飛臨距離我們六十八光年的金牛座(Taurus)[注三]。六十八光年的距離相對於地球上的任何尺度來說都是極其巨大的,但是相對於遠在三萬光年之外的銀河系中心,遠在兩百二十萬光年之外的仙女座大星雲遠在六千萬光年之外的室女座星系團,以及更為遙遠的其它天體來說無疑是微不足道的。人類的好奇心是沒有邊界的,可是即便人類航天器的速度再快上許多倍,甚至接近物理速度的上限 - 光速,用星際空間的距離來衡量依然是極其緩慢的,
那麼,有沒有什麼辦法可以讓航天器以某種方式變相地突破速度上限,從而能夠在很短的時間內跨越那些近乎無限的遙遠距離呢?科幻小說家們率先展開了想象的翅膀。
一九八五年,美國康乃爾大學(Cornell University) 的著名行星天文學家卡爾·薩根(Carl Sagan) 寫了一部科幻小說叫做《接觸》(Contact)。薩根對探索地球以外的智慧
生物有著濃厚的興趣,他客串科幻小說家的目的之一是要為尋找外星智慧生物的 SETI 計劃籌集資金他的這部小說後來被拍成了電影,為他贏得了廣泛的知名度,
薩根在他的小說中敘述了一個動人的故事:一位名叫艾麗(Ellie) 的女科學家收到了一串來自外星球智慧生物的電波信號。經過研究,她發現這串信號包含了建造一台特殊設備的方法,那台設備可以讓人類與信號的發送者會面經過努力,艾麗與同事成功地建造起了這台設備,並通過這台設備跨越了遙遠的星際空間與外星球智慧生物實現了第一次接觸。
但是,艾麗與同事按照外星球智慧生物提供的方法建造出的設備究竟利用了什麼方式讓旅行者跨越遙遠的星際空間的呢?這是薩根需要大膽“幻想”的地方。他最初的設想是利用黑洞。但是薩根畢竟不是普通的科幻小說家,他的科學背景使他希望自己的科幻小說儘可能地不與已知的物理學定律相矛盾。於是他給自己的老朋友加州理工大學(California Institute of Technology) 的索恩(Kip S. Thorne) 教授打了一個電話。索恩是研究引力理論的專家,薩根請他為自己的設想做一下技術評估。索恩經過思考及粗略的計算,很快告訴薩根黑洞是無法作為星際旅行的工具的,他建議薩根使用蟲洞 (wormhole) 這個概念。據我所知,這是蟲洞這一名詞第一次進入科幻小說中在那之後,各種科幻小說、電影、及電視連續劇相繼採用了這一名詞,蟲洞逐漸成為了科幻故事中的標準術語 這是科幻小說家與物理學家的一次小小交流結出的果實。
薩根與索恩的交流不僅為科幻小說帶來了一個全新的術語,也為物理學開創了一個新的研究領域。在物理學中,蟲洞這一概念最早是由米斯納(C. W. Misner) 與惠勒(J. A. Wheeler) 於一九五七年提出的,與人類發射第一個航天器恰好是同一年。那麼究竟什麼是蟲洞?它又為什麼會被科幻小說家視為星際旅行的工具呢?讓我們用一個簡單的例子來說明:大家知道,在一個蘋果的表面上從一個點到另一個點需要走一條弧線,但如果有一條蛀蟲在這兩個點之間蛀出了一個蟲洞,通過蟲洞就可以在這兩個點之間走直線,這顯然要比原先的弧線來得近。把這個類比從二維的蘋果表面推廣到三維的物理空間,就是物理學家們所說的蟲洞,而蟲洞可以在兩點之間形成快捷路徑的特點正是科幻小說家們喜愛蟲洞的原因[注五]。只要存在合適的蟲洞,無論多麼遙遠的地方都有可能變得近在咫尺,星際旅行家們將不再受制於空間距離的遙遠。在一些科幻故事中,技術水平高度發達的文明世界利用蟲洞進行星際旅行就像今天的我們利用高速公路在城鎮間旅行一樣。在著名的美國科幻電影及電視連續劇《星際之門》(Stargate,港台譯星際奇兵) 中人類利用外星文明留在地球上的一台被稱為“星際之門”的設備可以與其它許多遙遠星球上的“星際之門”建立蟲洞連接,從而能夠幾乎瞬時地把人和設備送到那些遙遠的星球上。蟲洞成為了科幻故事中星際旅行家的天堂。
不過米斯納與惠勒所提出的蟲洞是極其微小的,並且在極短的時間內就會消失,無法成為星際旅行的通道。薩根的小說發表之後,索恩對蟲洞產生了濃厚的興趣,並和他的學生莫里斯(Mike Morris) 開始對蟲洞作深入的研究。與米斯納和惠勒不同的是,索恩感興趣的是可以作為星際旅行通道的蟲洞,這種蟲洞被稱為可穿越蟲洞 (traversable wormhole)。
那麼什麼樣的蟲洞能成為可穿越蟲洞呢?一個首要的條件就是它必須存在足夠長的時間,不能夠沒等星際旅行家穿越就先消失。因此可穿越蟲洞首先必須是足夠穩定的。一個蟲洞怎樣才可以穩定存在呢?索恩和莫里斯經過研究發現了一個不太妙的結果,那就是在蟲洞中必須存在某種能量為負的奇特物質!為什麼會有這樣的結論呢?那是因為物質進入蟲洞時是向內匯聚的,而離開蟲洞時則是向外飛散的,這種由匯聚變成飛散的過程意味著在蟲洞的深處存在著某種排斥作用。由於普通物質的引力只能產生匯聚作用,只有負能量物質才能夠產生這種排斥作用。因此,要想讓蟲洞成為星際旅行的通道,必須要有負能量的物質。索恩和莫里斯的這一結果是人們對可穿越蟲洞進行研究的起點。
索恩和莫里斯的結果為什麼不太妙呢?因為人們在宏觀世界里從未觀測到任何負能量的物質。事實上,在物理學中人們通常把真空的能量定為零。所謂真空就是一無所有,而負能量意味著比一無所有的真空具有“更少”的物質,這在經典物理學中是近乎於自相矛盾的說法。
但是許多經典物理學做不到的事情在二十世紀初隨著量子理論的發展卻變成了可能。負能量的存在很幸運地正是其中一個例子。在量子理論中,真空不再是一無所有,它具有極為複雜的結構,每時每刻都有大量的虛粒子對產生和湮滅。一九四八年,荷蘭物理學家卡西米爾(Hendrik Casimir) 研究了真空中兩個平行導體板之間的這種虛粒子態,結果發現它們比普通的真空具有更少的能量,這表明在這兩個平行導體板之間出現了負的能量密度!在此基礎上他發現在這樣的一對平行導體板之間存在一種微弱的相互作用。他的這一發現被稱為卡什米爾效應。將近半個世紀后的一九九七年,物理學家們在實驗上證實了這種微弱的相互作用,從而間接地為負能量的存在提供了證據。除了卡什米爾效應外,二十世紀七八十年代以來,物理學家在其它一些研究領域也先後發現了負能量的存在。
因此,種種令人興奮的研究都表明,宇宙中看來的確是存在負能量物質的。但不幸的是,迄今所知的所有這些負能量物質都是由量子效應產生的,因而數量極其微小。以卡西米爾效應(Casimireffect)為例,倘若平行板的間距為一米,它所產生的負能量的密度相當於在每十億億立方米的體積內才有一個(負質量的) 基本粒子!而且間距越大負能量的密度就越小。其它量子效應所產生的負能量密度也大致相仿。因此在任何宏觀尺度上由量子效應產生的負能量都是微乎其微的。
另一方面,物理學家們對維持一個可穿越蟲洞所需要的負能量物質的數量也做了估算,結果發現蟲洞的半徑越大,所需要的負能量物質就越多。具體地說,為了維持一個半徑為一公里的蟲洞所需要的負能量物質的數量相當於整個太陽系的質量。
如果說負能量物質的存在給利用蟲洞進行星際旅行帶來了一絲希望,那麼這些更具體的研究結果則給這種希望潑上了一盆無情的冷水。因為一方面迄今所知的所有產生負能量物質的效應都是量子效應,所產生的負能量物質即使用微觀尺度來衡量也是極其微小的。另一方面維持任何宏觀意義上的蟲洞所需的負能量物質卻是一個天文數字!這兩者之間的巨大鴻溝無疑給建造蟲洞的前景蒙上了濃重的陰影。
雖然數字看起來令人沮喪,但是別忘了當我們討論蟲洞的時候,我們是在討論一個科幻的話題。既然是討論科幻的話題,我們姑且把眼光放得樂觀些。即使我們自己沒有能力建造蟲洞,或許宇宙間還存在其它文明生物有能力建造蟲洞,就像《星際之門》的故事那樣。甚至,即使誰也沒有能力建造蟲洞,或許在浩瀚宇宙的某個角落裡存在著天然的蟲洞。因此讓我們姑且假設在未來的某一天人類真的建造或者發現了一個半徑為一公里的蟲洞。
我們是否就可以利用它來進行星際旅行了呢?
初看起來半徑一公里的蟲洞似乎足以滿足星際旅行的要求了,因為這樣的半徑在幾何尺度上已經足以讓相當規模的星際飛船通過了。看過科幻電影的人可能對星際飛船穿越蟲洞的特技處理留有深刻的印象。從屏幕上看,飛船周圍充斥著由來自遙遠天際的星光和輻射組成的無限絢麗的視覺幻象,看上去飛船穿越的似乎是時空中的一條狹小的通道。
但實際情況遠比這種幻想來得複雜。事實上為了能讓飛船及乘員安全地穿越蟲洞,幾何半徑的大小並不是星際旅行家所面臨的主要問題。按照廣義相對論,物質在通過象蟲洞這樣空間結構高度彎曲的區域,會遇到一個十分棘手的問題,那就是張力。這為由於引力場在空間各處的分佈不均勻所造成的,它的一種大家熟悉的表現形式就是海洋中的潮汐。由於這種張力的作用,當星際飛船接近蟲洞的時候,飛船上的乘員會漸漸感覺到自己的身體在沿蟲洞的方向上有被拉伸的感覺,而在與之垂直的方向上則有被擠壓的感覺。這種感覺便是由蟲洞引力場的不均勻造成的。一開始,這種張力只是使人稍有不適而已,但隨著飛船與蟲洞的接近,這種張力會迅速增加,距離每縮小十分之一,這種張力就會增加約一千倍。當飛船距離蟲洞還有一千公里的時候,這種張力已經超出了人體所能承受的極限,如果飛船到這時還不趕緊折回的話,所有的乘員都將在致命的張力作用下喪命。再往前飛一段距離,飛船本身將在可怕的張力作用下解體,而最終,瘋狂增加的張力將把已經成為碎片的飛船及乘員撕成一長串亞原子粒子。從蟲洞另一端飛出的就是這一長串早已無法分辨來源的亞原子粒子!
這就是星際探險者試圖穿越半徑為一公里的蟲洞將會遭遇的結局。半徑一公里的蟲洞不是旅行家的天堂,而是探險者的地獄。
因此一個蟲洞要成為可穿越蟲洞,一個很明顯的進一步要求就是:飛船及乘員在通過蟲洞時所受到的張力必須很小 計算表明,這個要求只有在蟲洞的半徑極其巨大的情況下才能得到滿足[注六]。那麼究竟要多大的蟲洞才可以作為星際旅行的通道呢?計算表明,半徑小於一光年的蟲洞對飛船及乘員產生的張力足以破壞物質的原子結構,這是任何堅固的飛船都無法經受的,更遑論脆弱的飛船乘員了。因此,一個蟲洞要成為可穿越蟲洞,其半徑必須遠遠大於一光年。
但另一方面,一光年用日常的距離來衡量雖然是一個巨大的線度,用星際的距離來衡量,卻也不算驚人。我們所在的銀河系的線度大約是它的十萬倍,假如在銀河系與兩百二十萬光年外的仙女座大星雲之間存在一個蟲洞的話從線度上講它只不過是一個非常細小的通道。那麼會不會在我們周圍的星際空間中真的存在這樣的通道,只不過還未被我們發現呢?答案是否定的。因為半徑為一光年的蟲洞真正驚人的地方不在於它的線度,而在於維持它所需的負能量物質的數量。計算表明,維持這樣一個蟲洞所需的負能量物質的數量相當於整個銀河系中所有發光星體質量總和的一百倍!這樣的蟲洞產生的引力效應將遠比整個銀河系的引力效應更為顯著,如果在我們附近的星際空間中存在這種蟲洞的話,周圍幾百萬光年內的物質運動都將受到顯著的影響,我們早就從它的引力場中發現其蹤跡了。
因此不僅在地球上不可能建造可穿越蟲洞,在我們附近的整個星際空間中都幾乎不可能存在可穿越蟲洞而未被發現。
這樣看來,我們只剩下一種可能性需要討論了,那就是在宇宙的其它遙遠角落裡是否有可能存在可穿越蟲洞?對於這個問題,我們也許永遠都無法確切地知道結果,因為宇宙實在太大了。但是維持可觀測蟲洞所需的數量近乎於天方夜譚的負能量物質幾乎為我們提供了答案。迄今為止,人類從未在任何宏觀尺度上發現過負能量物質所有產生負能量物質的實驗方法利用的都是微弱的量子效應。為了能夠維持一個可穿越蟲洞,必須存在某種機制把量子效應所產生的微弱的負能量物質彙集起來,達到足夠的數量。但是負能量物質可以被匯聚起來嗎?物理學家們在這方面做了一些理論研究,結果表明由量子效應產生的負能量物質是不可能無限制地加以匯聚的。負能量物質匯聚得越多,它所能夠存在的時間就會越短。因此一個蟲洞沒有負能量物質是不穩定的,負能量物質太多了也會不穩定!那麼到底什麼樣的蟲洞才能夠穩定的呢?初步的計算表明,只有線度比原子的線度還要小二十幾個數量級的蟲洞才是穩定的!
這一系列結果無疑是非常冷酷的,如果這些結果成立的話,存在可穿越蟲洞的可能性就基本上被排除了,所有那些美麗的科幻故事也就都成了鏡花水月。不過幸運 (或不幸) 的是,上面所敘述的許多結果依據的是還比較前沿 - 因而相對來說也還比較不成熟- 的物理理論。未來的研究是否會從根本上動搖這些理論,從而完全推翻我們上面介紹的許多結果,還是一個未知數。退一步講,即使那些物理理論基本成立,上面所敘述的許多結果也只是從那些理論推出的近似結果或特例。比方說,許多結果假定了蟲洞是球對稱的,而實際上蟲洞完全可以是其它形狀的,不同形狀的蟲洞所要求的負能量物質的數量,所產生張力的大小都是不同的。所有這些都表明即使那些物理理論真的成立,我們上面提到的結論也不見得是完全
打開它的方法就是共鳴利用物質間相互吸引原理使兩時空蟲洞正反兩種物質能量互相吸引從而打開它,但這兩種能量是光能量與暗能量
英國著名物理學家史蒂芬霍金承認外星人的存在後,又再語出驚人。他在一部紀錄片內討論時間旅行,說明“時光機器”在科學上並非無可能。例如,如果一艘太空船能以接近光速的速度在宇宙飛行,就可讓船上乘客進入未來。他指出,在瑞士地下的大型強子對撞機內,人類已把粒子加速至接近光速運行。
物理學家霍金拍攝一部有關宇宙的紀錄片時指出,要進入未來大概有兩種方法,第一就是通過所謂的“蟲洞”。霍金強調,蟲洞就在四周,只是小到肉眼很難看見,它們存在於空間與時間的裂縫中。如同在3度空間中,時間也有細微的裂縫,而比分子、原子還細小的空間則被命名為“量子泡沫”,蟲洞就存在於其中。不過,霍金表示,這些隧道小到人類無法穿越,但有朝一日也許能夠抓住一個蟲洞,再將它無限放大,或許將來也可以建造一個巨大的蟲洞。
霍金指出,理論上時光隧道或蟲洞不但能帶著人類前往其他行星,如果蟲洞兩端位於同一位置,且以時間而非距離間隔,那麼太空船即可飛入,飛出后仍然接近地球,只是進入所謂“遙遠的過去”。不過霍金也指出,時光機不能回到過去,因為回到過去違反了基本的因果論。
另外,霍金還說,如果科學家能夠建造速度接近光速的太空船,那麼太空船必然會因為不能違反光速是最大速限的法則,而導致艙內的時間變慢,那麼飛行一個星期就等於是地面上的100年,也就相當於飛進未來。
歷史上最快的有人駕駛飛行器,是“阿波羅十號”。它達到每小時25000英里。但若想在時間中旅行,必須再快2000多倍。需要一部足以攜帶大量燃料的龐大機器。飛船會不斷加速,在一周內,它就可以到達外行星。兩年後,它可以達到半光速,飛出太陽系。再兩年後它將達到光速的90%,遠離地球約三十萬億英里。發射四年後,飛船就會開始穿越未來。飛船上每度過一小時,地球上將度過兩小時。
再經過兩年開足馬力的旅行,飛船將達到其最高速,也即光速的99%。在這種速度中,飛船上的一天,等於地球上的一年。這時的飛船就真正飛入未來了。
其他物理學家支持霍金的理論,包括曼徹斯特大學粒子物理學教授布賴恩科克斯。科克斯說:“當用大型強子對撞機把粒子加速,達到光速的99%,粒子經歷的時間,以其時間的七千分之一速率消逝。太空中的數十年,在地球上可能已過去了250萬年”。
但遺憾的是,有關蟲洞的論述還未被實驗證實。
在銀河系中央存在恐怖的超大質量黑洞,這是一種質量龐大的天體,至少可達到數百萬倍太陽質量,但科學家提出了一個設想,認為銀河系中央的超大質量黑洞可能是一個蟲洞,如果有更高級的文明存在,那麼它們就會利用這個蟲洞進行星際旅行,甚至是回到過去。銀河系中央的黑洞被命名為人馬座A*,其在吞噬物質的過程中釋放出強大的射電波,質量接近太陽質量的4百萬倍左右,我們對這個黑洞的了解並不多,但它確實是存在的。
蟲洞
黑洞是內部具有強大引力場的天體,這樣強大的引力使得即使是光也無法逃逸。愛因斯坦的廣義相對論認為當物質被擠壓成非常小的空間時就會形成黑洞。儘管黑洞無法被直接觀測到,但天文學家已經鑒別了很多很可能是黑洞的天體,主要是基於對環繞在其周圍的物質的觀測。
法國高等科學研究所的天體物理學家蒂博·達穆爾(Thibault Damour)和德國不萊梅國際大學的謝爾蓋·索羅杜金(Sergey Solodukhin)認為這些黑洞天體可能是名為蟲洞的結構。
蟲洞是連接時空織布中兩個不同地方的彎曲通道。如果你將宇宙想象為二維的紙張,蟲洞就是連接這張紙片和另一張紙片的“喉嚨”通道。在這種情況下,另一張紙片可能是另一個單獨的宇宙,擁有自己的恆星、星系和行星。達穆爾和索羅杜金研究了蟲洞可能的情形,並驚訝的發現它如此類似於黑洞以至於幾乎無法區分兩者之間的差別。
霍金輻射
物質環繞蟲洞旋轉的方式與環繞黑洞是一樣的,因為兩者扭曲環繞它們的時空的方式是相同的。有人提出利用霍金輻射來區分兩者,霍金輻射是指來自黑洞的光和粒子輻射,它們具有能量光譜的特性。但是這種輻射非常微弱以至於它可能被其他源完全湮沒,例如宇宙大爆炸后殘餘的宇宙微波背景輻射,因此觀測霍金輻射幾乎是不可能的。
另一個可能存在的不同便是,蟲洞可能沒有黑洞所具有的視界。這意味著物質可以進入蟲洞,也可以再次出來。實際上,理論家稱有一類蟲洞會自我包裹,因此並不會產生另一個宇宙的入口,而是返回到自身的入口。
勇敢者的遊戲
即便如此,這也沒有一個簡單的測試方法。由於蟲洞的具體的形狀不同,物質跌入蟲洞之後可能要花費數十億年之後才能從裡面出來。即使蟲洞的形狀非常完美,宇宙最古老的蟲洞目前也尚未“吐出”任何物質。
看起來似乎只有一條探尋天文學黑洞的途徑,那就是勇敢的縱身一躍。這絕對是一個勇敢者的危險遊戲,因為如果跳入的是一個黑洞,其強大的重力場將會撕裂我們身體的每一個原子;即便幸運的進入了一個蟲洞,內部強大的引力仍然是致命的。
假設你能倖存下來,而蟲洞恰好是不對稱的,你會發現自己處在另一個宇宙的另一邊。還沒等你看清楚,這個蟲洞也許又把你吸回到所出發的宇宙入口了。
悠悠球運動
“太空船也能做這樣的悠悠球運動,”達穆爾說道,“(但是)如果使用自己的燃料,你就能從蟲洞的引力中逃逸”,然後探索另一邊的宇宙。
不過在宇宙這一邊的朋友也許得等上數十億年才能再次見到你,因為在蟲洞里的穿行時間將會非常漫長。這樣的延遲使得在蟲洞兩邊的有效通訊變得幾乎不可能。如果能夠發現或者構建微觀蟲洞,這種延遲可能短至幾秒鐘時間,索羅杜金這樣說道,這潛在的支持了雙邊通訊。
研究黑洞形成和蟲洞特性的美國俄勒岡大學尤金分校的斯蒂芬·許(Stephen Hsu),也認為利用觀測區分黑洞和蟲洞之間差別幾乎是不可能的,至少利用目前的科技是不可能實現的。
外來物質
“黑洞最重要的特性就是落入黑洞的物體“有去無回”的臨界點,而對此我們目前還無法進行測試。”斯蒂芬說道。但目前被認為是黑洞的天體也可能的確是黑洞而非蟲洞,這種情況也並非不可能。目前存在不少關於黑洞形成的可行情景,例如大質量恆星的坍塌,但有關蟲洞是如何形成的則仍是未知數。
蟲洞可能與宏觀的黑洞有所不同,它需要一些外來的物質保持自身穩定,而這種外來物質是否真實存在又是個未知數。
索羅杜金認為蟲洞的形成方式可能與黑洞相差無幾,例如都來自於坍塌的恆星。在這種情境下,物理學家一般認為會產生黑洞,但索羅杜金認為量子效應可能會阻止坍縮形成黑洞的過程,轉而形成了蟲洞。
微觀黑洞
索羅杜金稱這一機制在更完整的物理學理論下將不可避免,後者統一了重力和量子力學的理論,它是物理學界長久以來的夢想和目標。如果這一理論是正確的,那麼以往我們認為會形成黑洞的地方,就可能會形成蟲洞。
而這一猜想並不是沒有方法對其進行測試,有的物理學家認為未來的粒子加速器實驗將能夠產生微觀黑洞。這種微觀黑洞有可能放射出可以計算的霍金輻射,以證明產生的是黑洞而非蟲洞。但是如果索羅杜金猜想的是正確的話,那麼形成的會是一個微觀蟲洞,因此將不會產生任何輻射。“通過這樣簡單的測試就能辨別產生的是黑洞還是蟲洞。”
蟲洞的另一個優點在於能夠解決所謂的黑洞信息悖論。黑洞唯一能夠釋放出的就是霍金輻射,但這些霍金輻射將如何攜帶最初落入黑洞天體的原始信息,目前還尚不清楚。這種混亂效應與量子力學相衝突,後者禁止這種信息的丟失。
“從理論上來說,蟲洞要比黑洞好的多,因此它不會發生信息丟失。”索羅杜金說道。由於蟲洞沒有視界,物體無需轉化成霍金輻射就能自動離開蟲洞,因此也就不存在信息丟失的問題。