java抽象類

java抽象類

使用了關鍵詞abstract聲明的類叫作“抽象類”。如果一個類里包含了一個或多個抽象方法,類就必須指定成abstract(抽象)。“抽象方法”,屬於一種不完整的方法,只含有一個聲明,沒有方法主體。

抽象語法


下面是抽象方法聲明時採用的語法:
abstract void f();
如果從一個抽象類繼承,而且想生成新類型的一個對象,就必須為基礎類中的所有抽象方法提供方法定義。
如果不這樣做(完全可以選擇不做),則衍生類也會是抽象的,而且編譯器會強迫我們用abstract 關鍵字標誌那個類的“抽象”本質。
即使不包括任何abstract 方法,亦可將一個類聲明成“抽象類”。如果一個類沒必要擁有任何抽象方法,而且我們想禁止那個類的所有實例,這種能力就會顯得非常有用。
面向對象的概念中,我們知道所有的對象都是通過類來描繪的,但是反過來卻不是這樣。並不是所有的類都是用來描繪對象的,如果一個類中沒有包含足夠的信息來描繪一個具體的對象,這樣的類就是抽象類。抽象類往往用來表徵我們在對問題領域進行分析、設計中得出的抽象概念,是對一系列看上去不同,但是本質上相同的具體概念的抽象。比如:如果我們進行一個圖形編輯軟體的開發,就會發現問題領域存在著圓、三角形這樣一些具體概念,它們是不同的,但是它們又都屬於形狀這樣一個概念,形狀這個概念在問題領域是不存在的,它就是一個抽象概念。正是因為抽象的概念在問題領域沒有對應的具體概念,所以用以表徵抽象概念的抽象類是不能夠實例化的。
在面向對象領域,抽象類主要用來進行類型隱藏。我們可以構造出一個固定的一組行為的抽象描述,但是這組行為卻能夠有任意個可能的具體實現方式。這個抽象描述就是抽象類,而這一組任意個可能的具體實現則表現為所有可能的派生類。模塊可以操作一個抽象體。由於模塊依賴於一個固定的抽象體,因此它可以是不允許修改的;同時,通過從這個抽象體派生,也可擴展此模塊的行為功能。熟悉OCP的讀者一定知道,為了能夠實現面向對象設計的一個最核心的原則OCP(Open-Closed Principle),抽象類是其中的關鍵所在。

對比介面


語法定義層

在abstract class方式中,Demo可以有自己的數據成員,也可以有非abstract的成員方法,而在interface方式的實現中,Demo只能夠有靜態的不能被修改的數據成員(也就是必須是static final的,不過在interface中一般不定義數據成員),所有的成員方法都是abstract的。

編程層面

abstract class在Java語言中表示的是一種繼承關係,一個類只能使用一次繼承關係。但是,一個類卻可以實現多個interface。

設計理念層面

abstract class在Java語言中體現了一種繼承關係,要想使得繼承關係合理,父類和派生類之間必須存在"is a"關係,即父類和派生類在概念本質上應該是相同的。對於interface 來說則不然,並不要求interface的實現者和interface定義在概念本質上是一致的,僅僅是實現了interface定義的契約(功能)而已。
抽象類函數
抽象類函數
四、抽象類的示例代碼
//: interfaces/music4/Music4.java
// Abstract classes and methods.
// 以下是 抽象類 的示例
package interfaces.music4;
import pets.Pet;
import polymorphism.music.Note;
import static net.mindview.util.Print.*;
abstract class Instrument {
// 抽象類中可以有非抽象方法。
private int i; // Storage allocated for each
public abstract void play(Note n);
public String what() { return "Instrument"; }
public abstract void adjust();
}
class Wind extends Instrument {
public void play(Note n) {
print("Wind.play() " + n);
}
public String what() { return "Wind"; }
public void adjust() {}
}
class Percussion extends Instrument {
public void play(Note n) {
print("Percussion.play() " + n);
}
public String what() { return "Percussion"; }
public void adjust() {}
}
class Stringed extends Instrument {
public void play(Note n) {
print("Stringed.play() " + n);
}
public String what() { return "Stringed"; }
public void adjust() {}
}
class Brass extends Wind {
public void play(Note n) {
print("Brass.play() " + n);
}
public void adjust() { print("Brass.adjust()"); }
}
class Woodwind extends Wind {
public void play(Note n) {
print("Woodwind.play() " + n);
}
public String what() { return "Woodwind"; }
}
class TestAbsExt extends Instrument
{
public void play( Note n ) {
print ("TestAbsExt.play()" + n);
}
public String what()
{
return "TestAbsExt";
}
public void adjust()
{
}
}
// 不含任何抽象方法的抽象類
abstract class AbsClass
{
public void f1() {
print("f1()");
}
public void f2() {
print("f2()");
}
}
public class Music4 {
// Doesn't care about type, so new types
// added to the system still work right:
static void tune(Instrument i) {
// ...
i.play(Note.MIDDLE_C);
}
static void tuneAll(Instrument[] e) {
for(Instrument i : e)
tune(i);
}
public static void main(String[] args) {
// !抽象類不能被實例化
// 若使用以下語句,將會收到報錯。
// ! new Instructment();
// Upcasting during addition to the array:
Instrument[] orchestra = {
new Wind(),
new Percussion(),
new Stringed(),
new Brass(),
new Woodwind()
};
tuneAll(orchestra);
}
} :~