輝光放電
稀薄氣體中的自持放電現象
輝光放電(glow discharge)是指低壓氣體中顯示輝光的氣體放電現象,即是稀薄氣體中的自持放電(自激導電)現象。由法拉第第一個發現,它包括亞正常輝光和反常輝光兩個過渡階段。輝光放電主要應用於氖穩壓管、氦氖激光器等器件的製造。
輝光放電
輝光放電有亞正常輝光和反常輝光兩個過渡階段,放電的整個通道由不同亮度的區間組成,即由陰極表面開始,依次為:①阿斯通暗區;②陰極光層;③陰極暗區(克魯克斯暗區);④負輝光區;⑤法拉第暗區;⑥正柱區;⑦陽極暗區;⑧陽極光層。其中以負輝光區、法拉第暗區和正柱區為主體。這些光區是空間電離過程及電荷分佈所造成的結果,與氣體類別、氣體壓力、電極材料等因素有關,這些都可以從放電理論上作出解釋。輝光放電時,在兩個電極附近聚集了較多的異號空間電荷,因而形成明顯的電位降落,分別稱為陰極壓降和陽極壓降。陰極壓降又是電極間電位降落的主要成分,在正常輝光放電時,兩極間的電壓不隨電流變化,即具有穩壓的特性。
輝光放電時,在放電管兩極電場的作用下,電子和正離子分別向陽極、陰極運動,並堆積在兩極附近形成空間電荷區
。因正離子的漂移速度遠小於電子,故正離子空間電荷區的電荷密度比電子空間電荷區大得多,使得整個極間電壓幾乎全部集中在陰極附近的狹窄區域內。這是輝光放電的顯著特徵,而且在正常輝光放電時,兩極間電壓不隨電流變化。
在陰極附近,二次電子發射產生的電子在較短距離內尚未得到足夠的能使氣體分子電離或激發的動能,所以緊接陰極的區域不發光。而在陰極輝區,電子已獲得足夠的能量碰撞氣體分子,使之電離或激發發光。其餘暗區和輝區的形成也主要取決於電子到達該區的動能以及氣體的壓強(電子與氣體分子的非彈性碰撞會失去動能)。