錢德拉塞卡極限

白矮星的最高質量

錢德拉塞卡極限(Chandrasekhar limit)指白矮星的最高質量,是太陽質量的1.44倍。這個極限是由錢德拉塞卡計算出的。計算的結果會依據原子核的結構和溫度而有些差異。

簡介


定義

錢德拉塞卡極限(Chandrasekhar limit),以印度裔美籍天文物理學家蘇布拉馬尼揚·錢德拉塞卡命名,是無自轉恆星以電子簡併壓力阻擋重力坍縮所能承受的最大質量,這個值大約是1.4倍太陽質量,計算的結果會依據原子核的結構和溫度而有些差異。
錢德拉塞卡給出
此外,是電子的平均分子量,是氫原子的質量,而是與萊恩-恩登方程式有關的常數,在數值上,這個值大約是公斤,或是,此處的是標準的太陽質量,而是普朗克質量,是M的數量級極限。只要超過錢德拉塞卡極限,白矮星就可能成為體積為0,但密度為∞的物體。

簡要應用

星體產生的熱會令其大氣層向外移。當星體的能量用盡,其大氣層便會受星體的引力影響而塌回星體表面。如果星體的質量少於錢德拉塞卡極限,這個塌回便受電子簡併壓力限制,因而得出一個穩定的白矮星。若它的質量高於錢德拉塞卡極限,它就會收縮,而變成中子星、黑洞或理論上的夸克星。
一個穩定的冷星的最大的可能的質量的臨界值,若比這質量更大的恆星,則會坍縮成一個黑洞。

研究過程


發現過程

蘇布拉馬尼揚·錢德拉塞卡
蘇布拉馬尼揚·錢德拉塞卡
1928年,一位印度研究生——蘇布拉馬尼揚·錢德拉塞卡乘船來英國劍橋跟英國天文學家阿瑟·愛丁頓爵士(一位廣義相對論家)學習。(據記載,在本世紀20年代初有一位記者告訴愛丁頓,說他聽說世界上只有三個人能理解廣義相對論,愛丁頓停了一下,然後回答:“我正在想這第三個人是誰”。)在他從印度來英的旅途中,錢德拉塞卡算出在耗盡所有燃料之後,多大的恆星可以繼續對抗自己的引力而維持自己。這個思想是說:當恆星變小時,物質粒子靠得非常近,而按照泡利的不相容原理,它們必須有非常不同的速度。這使得它們互相散開並企圖使恆星膨脹。一顆恆星可因引力作用和不相容原理引起的排斥力達到平衡而保持其半徑不變,正如在它的生命的早期引力被熱所平衡一樣。
然而,錢德拉塞卡意識到,不相容原理所能提供的排斥力有一個極限。恆星中的粒子的最大速度差被相對論限制為光速。這意味著恆星變得足夠緊緻之時,由不相容原理引起的排斥力就會比引力的作用小。錢德拉塞卡計算出:一個大約為太陽質量一倍半的冷的恆星不能支持自身以抵抗自己的引力,這質量稱為錢德拉塞卡極限。蘇聯科學家列夫·達維多維奇·蘭道幾乎在同時也得到了類似的發現。

重大意義

這對大質量恆星的最終歸宿具有重大的意義。如果一顆恆星的質量比錢德拉塞卡極限小,它最後會停止收縮並終於變成一顆半徑為幾千英里和密度為每立方英寸幾百噸的“白矮星”。白矮星是它物質中電子之間的不相容原理排斥力所支持的。我們觀察到大量這樣的白矮星。第一顆被觀察到的是繞著夜空中最亮的恆星——天狼星轉動的那一顆。

恆星形態

朗道指出,對於恆星還存在另一可能的終態。其極限質量大約也為太陽質量的一倍或二倍,但是其體積甚至比白矮星還小得多。這些恆星是由中子和質子之間,而不是電子之間的不相容原理排斥力所支持。所以它們被叫做中子星。它們的半徑只有10英里左右,密度為每立方英寸幾億噸。在中子星被第一次預言時,並沒有任何方法去觀察它。實際上,很久以後的1976年它們才被觀察到。