水解酸化
水解酸化
水解處理方法是一種介於好氧和厭氧處理法之間的方法,和其它工藝組合可以降低處理成本提高處理效率。水解是指有機物進入微生物細胞前、在胞外進行的生物化學反應。
水解(酸化)處理方法是一種介於好氧和厭氧處理法之間的方法,和其它工藝組合可以降低處理成本提高處理效率。水解酸化工藝根據產甲烷菌與水解產酸菌生長速度不同,將厭氧處理控制在反應時間較短的厭氧處理第一和第二階段,即在大量水解細菌、酸化菌作用下將不溶性有機物水解為溶解性有機物,將難生物降解的大分子物質轉化為易生物降解的小分子物質的過程,從而改善廢水的可生化性,為後續處理奠定良好基礎。
水解是指有機物進入微生物細胞前、在胞外進行的生物化學反應。微生物通過釋放胞外自由酶或連接在細胞外壁上的固定酶來完成生物催化反應。
酸化是一類典型的發酵過程,微生物的代謝產物主要是各種有機酸。
從機理上講,水解和酸化是厭氧消化過程的兩個階段,但不同的工藝水解酸化的處理目的不同。水解酸化-好氧生物處理工藝中的水解目的主要是將原有廢水中的非溶解性有機物轉變為溶解性有機物,特別是工業廢水,主要將其中難生物降解的有機物轉變為易生物降解的有機物,提高廢水的可生化性,以利於後續的好氧處理。考慮到後續好氧處理的能耗問題,水解主要用於低濃度難降解廢水的預處理。混合厭氧消化工藝中的水解酸化的目的是為混合厭氧消化過程的甲烷發酵提供底物。而兩相厭氧消化工藝中的產酸相是將混合厭氧消化中的產酸相和產甲烷相分開,以創造各自的最佳環境。
水解酸化池內分污泥床區和清水層區,待處理污水以及濾池反衝洗時脫落的剩餘微生物膜由反應器底部進入池內,並通過帶反射板的布水器與污泥床快速而均勻地混合。污泥床較厚,類似於過濾層,從而將進水中的顆粒物質與膠體物質迅速截留和吸附。由於污泥床內含有高濃度的兼性微生物,在池內缺氧條件下,被截留下來的有機物質在大量水解—產酸菌作用下,將不溶性有機物水解為溶解性物質,將大分子、難於生物降解的物質轉化為易於生物降解的物質;同時,生物濾池反衝洗時排出的剩餘污泥(剩餘微生物膜)菌體外多糖粘質層發生水解,使細胞壁打開,污泥液態化,重新回到污水處理系統中被好氧菌代謝,達到剩餘污泥減容化的目的。由於水解酸化的污泥齡較長(一般15~20天)。若採用水解酸化池代替常規的初沉池,除達到截留污水中懸浮物的目的外,還具有部分生化處理和污泥減容穩定的功能。
厭氧生化處理的概述
廢水厭氧生物處理是指在無分子氧的條件下通過厭氧微生物(包括兼氧微生物)的作用,將廢水中各種複雜有機物分解轉化成甲烷和二氧化碳等物質的過程。
厭氧生化處理過程:高分子有機物的厭氧降解過程可以被分為四個階段:水解階段、發酵(或酸化)階段、產乙酸階段和產甲烷階段。
1、水解階段
水解可定義為複雜的非溶解性的聚合物被轉化為簡單的溶解性單體或二聚體的過程。
2、發酵(或酸化)階段
發酵可定義為有機物化合物既作為電子受體也是電子供體的生物降解過程,在此過程中溶解性有機物被轉化為以揮發性脂肪酸為主的末端產物,因此這一過程也稱為酸化。
3、產乙酸階段
在產氫產乙酸菌的作用下,上一階段的產物被進一步轉化為乙酸、氫氣、碳酸以及新的細胞物質。
4、甲烷階段
這一階段,乙酸、氫氣、碳酸、甲酸和甲醇被轉化為甲烷、二氧化碳和新的細胞物質。
水解酸化分析
高分子有機物因相對分子量巨大,不能透過細胞膜,因此不可能為細菌直接利用。它們在水解階段被細菌胞外酶分解為小分子。例如,纖維素被纖維素酶水解為纖維二糖與葡萄糖,澱粉被澱粉酶分解為麥芽糖和葡萄糖,蛋白質被蛋白質酶水解為短肽與氨基酸等。這些小分子的水解產物能夠溶解於水並透過細胞膜為細菌所利用。水解過程通常較緩慢,多種因素如溫度、有機物的組成、水解產物的濃度等可能影響水解的速度與水解的程度。
酸化階段,上述小分子的化合物在酸化菌的細胞內轉化為更為簡單的化合物並分泌到細胞外。發酵細菌絕大多數是嚴格厭氧菌,但通常有約1%的兼性厭氧菌存在於厭氧環境中,這些兼性厭氧菌能夠起到保護嚴格厭氧菌免受氧的損害與抑制。這一階段的主要產物有揮發性脂肪酸、醇類、乳酸、二氧化碳、氫氣、氨、硫化氫等,產物的組成取決於厭氧降解的條件、底物種類和參與酸化的微生物種群。
總結
水解階段是大分子有機物降解的必經過程,大分子有機物想要被微生物所利用,必須先水解為小分子有機物,這樣才能進入細菌細胞內進一步降解。酸化階段是有機物降解的提速過程,因為它將水解后的小分子有機物進一步轉化為簡單的化合物並分泌到細胞外。這也是為何在實際的工業廢水處理工程中,水解酸化往往作為預處理單元的原因。
兩點普遍認同的作用:
1、提高廢水可生化性:能將大分子有機物轉化為小分子。
2、去除廢水中的COD:既然是異養型微生物細菌,那麼就必須從環境中汲取養分,所以必定有部分有機物降解合成自身細胞。
水解(酸化)池設計計算
1、有效池容V可以根據污水在池內的水力停留時間計算的。水解(酸化)池內水力停留時間需根據污水的有機物種類(水解的速度情況)、進水有機物濃度、當地的平均氣溫情況綜合而定。
2、池截面面積根據污水在池內的上升流速計算。對於水解酸化反應器,為了保持其處理的高效率,必須保持池內足夠多的活性污泥,同時要使進入反應器的廢水盡量快地與活性污泥混合,增加活性污泥與進水有機物的接觸好。上升流速需要保證污泥不沉積,同時又不能使活性污泥流失,所以保持合適的上升流速是必要的。
3、反應池布水系統設計。水解酸化反應器良好運行的重要條件之一是保障污泥與廢水之間的充分接觸,為了布水均勻與克服死區,水解酸化池底部按多槽布水區設計,並且反應器底部進水布水 系統應該儘可能地布水均勻。
水解酸化池的布水系統形式有多種,布水系統兼有配水和水力攪拌的功能,為了保證這兩個功能的實現,需要滿足以下原則。
(1)、確保各單位面積的進水量基本相同,以防止發生短路現象;
(2)、儘可能滿足水力攪拌需要,保證進水有機物與污泥迅速混合;
(3)、易觀察到進水管的堵塞,併當堵塞發生后很容易被清除。
對於設計來說較難掌控的是水解酸化池的停留時間,因為廢水的種類不同,所含的有機物水解速度不同,所以停留時間自然不會相同。這就需要對所做的工程總結經驗數據,或者通過做實驗確定。對於水解酸化工藝本人並沒有什麼實際經驗,從理論來看,覺得可以放大停留時間,保證水解時間,讓其適當過渡到厭氧后兩個階段。
本文的設計計算部分摘錄了《水解(酸化)反應器在工程應用中的研究與展望》—中山市環境科學研究所論文的內容,另外該論文里有介紹了水解(酸化)反應器的類型及其在工程應用中的效果,其常規設計的兩個參數如下:
1、停留時間:一般為2.5-4.5h,考慮綜合情況。
2、池內上升流速:一般控制在0.8-1.8 m/h 較合適。
水解酸化主要用於有機物濃度較高、SS較高的污水處理工藝,是一個比較重要的工藝。如果后級接入UASB工藝,可以大大提高UASB的容積負荷,提高去除效率。水中有機物為複雜結構時,水解酸化菌利用H2O電離的H+和-OH將有機物分子中的C-C打開,一端加入H+,一端加入-OH,可以將長鏈水解為短鏈、支鏈成直鏈、環狀結構成直鏈或支鏈,提高污水的可生化性。水中SS高時,水解菌通過胞外粘膜將其捕捉,用外酶水解成分子斷片再進入胞內代謝,不完全的代謝可以使SS成為溶解性有機物,出水就變的清澈了。這其間水解菌是利用了水解斷鍵的有機物中共價鍵能量完成了生命的活動形式。但是COD在表象上是不一定有變化的,這要根據你在設計時選擇的參數和污水中有機物的性質共同確定的,長期的運行控制可以讓菌種產生誘導酶定向處理有機物,這也就是調試階段工藝控制好以後,處理效果會逐步提高的原因之一。水解工藝並不是簡單的,設計時要考慮污水中有機物的性質,確定水解的工藝設計,水解停留時間、攪拌方式、循環方式、污泥迴流方式、設計負荷、出水酸化度、污泥消解能力、后級配套工藝(UASB或接觸氧化)。
有人提到水解后COD不降反升,可能有以下原因:一是複雜有機物在COD檢測中不能顯示出來,但是水解后就可能顯示COD;另一種可能是調試時,運行參數控制不準確,造成水解菌膠團上升隨出水流失;再一可能是沒有考慮有機物的生物毒性濃度和系統的生物忍耐性,造成菌種中毒流失,流失的菌膠團在出水檢測中顯示COD增高,這就要求調試時加強生物相的觀察和記錄對比。
水解酸化池抗衝擊負荷能力強,在進水COD為1000mg/l時,仍能保證出水在200mg/l,能起到非常好的緩衝作用;水解酸化池水力停留時間短,土建費用較低,而且運行費用低,電耗低,污泥水解率高,減少脫水機運行時間,降低能耗,因此水解酸化池的穩定性和經濟性要遠遠超過其他預處理工藝。
運行一段時間后發現曝氣池前段水解酸化池發生污泥沉積在池內,最嚴重時甚至整個池內全是污泥,並有部分死泥上浮。經分析發現主要原因是水解酸化池潛水攪拌機功率太小,再加上污泥迴流量過大,池內介質密度太大,潛水攪拌機無法使整池泥水混合物翻滾起來,導致發生污泥沉積現象。
通過降低水解酸化池污泥迴流量至10%以下,能基本解決污泥沉積問題,但系統除磷效率和水解酸化功能明顯降低,最好的解決辦法是把潛水攪拌器更換為大功率潛水攪拌器。
一般認為,污水進入水解酸化池後進行充分的氨化作用,水解池出水氨氮比進水有所增加。而根據某水務某污水處理廠實際運行情況,水解酸化池水力停留時間在4.4h,污泥齡在6d左右,水解酸化池氨氮平均去除率達到42.34%,凱氏氮去除率為40.1%,總氮去除率為37.92%;具體分析原因:去除氨氮一般以同化作用、硝化反硝化作用實現,同化作用去除一般較少,通過計算去除率僅在10%左右,而一般硝化反硝化的條件也不具備,如溶解氧、水力停留時間等因素;因此必然存在另一種形式的去除氨氮的反應存在,初步分析可能存在厭氧氨氧化的現象,但需進一步的分析與研究。
一般厭氧發酵過程可分為四個階段,即水解階段、酸化階段、酸衰退階段和甲烷化階段。而在水解酸化池中把反應過程式控制制在水解與酸化兩個階段。在水解階段,組合填料可使固體有機物質降解為溶解性物質,大分子有機物質降解為小分子物質。在產酸階段,碳水化合物等有機物降解為有機酸,主要是乙酸、丁酸和丙酸等。水解和酸化反應進行得相對較快,一般難於將它們分開,此階段的主要微生物是水解—酸化細菌。
廢水經過水解酸化池后可以提高其可生化性,降低污水的pH值,減少污泥產量,為後續好氧生物處理創造了有利條件。組合填料在設置水解酸化池可以提高整個系統對有機物和懸浮物的去除效果,減輕好氧系統的有機負荷,使整個系統的能耗相比於單獨使用好氧系統大為降低。
水解酸化池的處理效果增強措施:
a、水解酸化池底部安裝有大阻力布水系統,利用二沉池的迴流污泥攪動水解酸化池底部的污泥,使其處於懸浮狀態並且與進入的廢水充分混合,從而提高了水解酸化池的處理效果,減輕後續好氧處理的負荷。二沉池的污泥迴流水解酸化池,可以增加水解酸化池內的污泥濃度、提高處理效果,同時使污泥得到消化,減少了剩餘污泥的排放量、降低污泥處理費用,從而減少了運行費用。
b、在水解酸化池內安裝彈性填料,對攪動的廢水進行水力切割,使懸浮狀態的污泥與水充分混合。為水解酸化菌的生長提供有利條件。
c、水解酸化池底部還裝有排泥管道系統,是由UASB厭氧反應器排泥系統改進而成,可以保證水解酸化池長期穩定的運行。
為保證設施的穩定運行,必須保證均勻進水!根據車間的日產生污水量,分次分階段的從調節池提升至水解酸化池。
污泥迴流量控制在總污泥量為池容的1/3即可。