紫外光譜儀

紫外光譜儀

紫外光譜儀,是利用紫外可見光譜法工作的儀器。

儀器簡介


紫外/可見光譜儀,是利用紫外可見光譜法工作的儀器。普通紫外可見光譜儀,主要由光源、單色器、樣品池(吸光池)、檢測器、記錄裝置組成。紫外/可見光譜儀設計一般都盡量避免在光路中使用透鏡,主要使用反射鏡,以防止由儀器帶來的吸收誤差。當光路中不能避免使用透明元件時,應選擇對紫外/可見光均透明的材料(如樣品池和參考池均選用石英玻璃)。紫外可見吸收光譜儀是紫外可見光譜儀中的用途較廣的一種,其主要由光源、單色器、吸收池、檢測器以及數據處理及記錄(計算機)等部分組成。紫外/可見光譜儀主要用於化合物的鑒定、純度檢查、異構物的確定、位阻作用的測定、氫鍵強度的測定以及其他相關的定量分析之中,但通常只是一種輔助分析手段,還需藉助其他分析方法,例如紅外、核磁、EPR等綜合方法對待測物進行分析,以得到精準的數據。

詳細信息


下面列舉兩個紫外-可見光譜的重要應用:金屬絡合物的紫外-可見光譜主要分為三個譜帶,首先,位於紫外區有配體-金屬中心離子的電子轉移躍遷譜帶,其強度通常比較大;第二,有d-d躍遷譜帶,其產生的原因是電子從中心離子中較低的d軌道躍遷到較高的d軌道,通常其強度比較弱,位於可見光區,它的最大吸收波長位置和強度與絡合物宏觀顏色及深淺相對應;第三,配位體內的電荷轉移帶,即配體本身的紫外吸收。因此,利用紫外-可見光譜法,可以研究金屬離子與有機物配體之間的絡合作用。紫外-可見光譜還可以用來表徵金屬納米粒子的聚集程度。金屬的表面等離子體共振吸收與表面自由電子的運動有關。貴金屬可看作自由電子體系,由導帶電子決定其光學和電學性質。在金屬等離子體理論中,若等離子體內部受到某種電磁擾動而使其一些區域電荷密度不為零,就會產生靜電回復力,使其電荷分佈發生振蕩,當電磁波的頻率和等離子體振蕩頻率相同時,就會產生共振。這種共振,在宏觀上就表現為金屬納米粒子對光的吸收。金屬的表面等離子體共振是決定金屬納米顆粒光學性質的重要因素。由於金屬粒子內部等離子體共振激發或由於帶間吸收,它們在紫外-可見光區域具有吸收譜帶。不同的金屬粒子具有其特徵吸收譜。因此,通過紫外-可見光光譜,特別是與Mie理論的計算結果相配合時,能夠獲得關於粒子顆粒度、結構等方面的許多重要信息。此技術簡單方便,是表徵液相金屬納米粒子最常用的技術。
通常有機分子處於基態,電子填入成鍵或非鍵軌道。但有機分子吸收UV后,則受激變為激發態,電子進入反鍵軌道。
由圖可知:可能的電子躍遷有6種。但實際上,由躍遷能級差和躍遷選律所決定,幾乎所有的UV吸收光譜都是由π-π*躍遷或n-π*躍遷所產生的,且n-π*躍遷一般都是弱吸收(ε<100)。