數學方法

數學方法

數學方法即用數學語言表述事物的狀態、關係和過程,並加以推導、演算和分析,以形成對問題的解釋、判斷和預言的方法。

所謂方法,是指人們為了達到某種目的而採取的手段、途徑和行為方式中所包含的可操作的規則或模式。人們通過長期的實踐,發現了許多運用數學思想的手段、門路或程序。同一手段、門路或程序被重複運用了多次,並且都達到了預期的目的,就成為數學方法。數學方法是以數學為工具進行科學研究的方法,即用數學語言表達事物的狀態、關係和過程,經過推導、運算與分析,以形成解釋、判斷和預言的方法。

特徵


數學方法具有以下三個基本特徵:
一是高度的抽象性和概括性;
二是精確性,即邏輯的嚴密性及結論的確定性;
三是應用的普遍性和可操作性。

作用


數學方法在科學技術研究中具有舉足輕重的地位和作用:一是提供簡潔精確的形式化語言,二是提供數量分析及計算的方法,三是提供邏輯推理的工具。現代科學技術特別是電子計算機的發展,與數學方法的地位和作用的強化正好是相輔相成。

分類


在中學數學中經常用到的基本數學方法,大致可以分為以下三類:
(1)邏輯學中的方法。例如分析法(包括逆證法)、綜合法、反證法、歸納法、窮舉法(要求分類討論)等。這些方法既要遵從邏輯學中的基本規律和法則,又因為運用於數學之中而具有數學的特色。
(2)數學中的一般方法。例如建模法、消元法、降次法、代入法、圖象法(也稱坐標法,在代數中常稱圖象法,在我們今後要學習的解析幾何中常稱坐標法)、比較法(數學中主要是指比較大小,這與邏輯學中的多方位比較不同)、放縮法,以及將來要學習的向量法、數學歸納法(這與邏輯學中的不完全歸納法不同)等。這些方法極為重要,應用也很廣泛。
(3)數學中的特殊方法。例如配方法、待定係數法、消元法、公式法、換元法(也稱之為中間變數法)、拆項補項法(含有添加輔助元素實現化歸的數學思想)、因式分解諸方法,以及平行移動法、翻折法等。這些方法在解決某些數學問題時也起著重要作用。

解釋


無論自然科學、技術科學或社會科學,為了要對所研究的對象的質獲得比較深刻的認識,都需要對之作出量的方面的刻畫,這就需要藉助於數學方法。對不同性質和不同複雜程度的事物,運用數學方法的要求和可能性是不同的。總的看,一門科學只有當它達到了能夠運用數學時,才算真正成熟了。在現代科學中,運用數學的程度,已成為衡量一門科學的發展程度,特別是衡量其理論成熟與否的重要標誌。
在科學研究中成功地運用數學方法的關鍵,就在於針對所要研究的問題提煉出一個合適的數學模型,這個模型既能反映問題的本質,又能使問題得到必要的簡化,以利於展開數學推導。建立數學模型是對問題進行具體分析的科學抽象過程,因而要善於抓住主要矛盾,突出主要因素和關係,撇開那些次要因素和關係。建立模型的過程還是一個“化繁為簡”、“化難為易”的過程。當然,簡化不是無條件的,合理的簡化必須考慮到實際問題所能允許的誤差範圍和所用的數學方法要求的前提條件。對於同一個問題可以建立不同的數學模型,同時在研究過程中不斷檢驗、比較,逐漸篩選出最優的模型,並在應用過程中繼續加以檢驗和修正,使之逐步完善。從一個特殊問題抽象出來的數學模型常常具有某種程度的普遍性,這是因為一個特殊的數學模型可以發展成為描述同一類現象的共同的數學模型。已經獲得廣泛應用並且卓有成效的數學模型大體上有兩類:一類稱為確定性模型,即用各種數學方程如代數方程、微分方程、積分方程、差分方程等描述和研究各種必然性現象,在這類模型中事物的變化發展遵從確定的力學規律性;另一類稱為隨機性模型,即用概率論和數理統計方法描述和研究各種或然性現象,事物的發展變化在這類模型中表現為隨機性過程,並遵從統計規律,而且具有多種可能的結果。客觀世界的必然性現象和或然性現象並不是截然分開的。有些事物主要地表現為必然性現象,但是當隨機因素的影響不可忽視時,則有必要在確定性模型中引入隨機因素,從而形成隨機微分方程這樣一類數學模型。20世紀70年代以來,還陸續發現在一些確定性模型中,如某些描述保守系統或耗散結構的非線性方程,並不附加隨機因素,但卻在一定的參數範圍內表現出“內在的隨機性”,即出現分岔和混沌的隨機行為。這類現象的機制及其數學問題已引起數學家和科學家的重視,目前正在研究中。
數學本身是不斷發展的,對各種量、量之間以及量的變化之間關係的研究也在日益深入,新的數學概念、新的數學分支在不斷出現,新的數學方法同樣在相應地孕育和萌生。隨著數學日益廣泛地向各門科學滲透,與各種對象和各種問題相結合,人們正在從中提煉出各種新的數學模型,創建各種新的數學工具。尤其是電子計算機的運用使數學方法顯示出新的生機,出現了所謂“數學實驗方法”。這種方法的實質是不在實際客體上實驗,而在其數學模型上“實驗”,這種“實驗”的操作就是在電子計算機上實現大量的數值運算和邏輯運算。這就使以往由於工作量大而難以進行的試算課題有可能完成。數學方法在這方面的發展前景是可觀的。