海島算經
魏晉時期劉徽所編量數學著作
《海島算經》共九問。都是用表尺重複從不同位置測望,取測量所得的差數,進行計算從而求得山高或谷深,這就是劉徽的重差理論。《海島算經》中,從題目文字可知所有計算都是用籌算進行的。“為實”指作為一個分數的分子,“為法”指作為分數的分母。所用的長度單位有里、丈、步、尺、寸;1里=180丈=1800尺;1丈=10尺:1步=6尺,1尺=10寸。
(1)今有望海島,立兩表,齊高三丈,前後相去千步,令后表與前表參相直。從前表卻行一百二十三步,人目著地取望島峰,與表末參合。從后表卻行一百二十七步,人目著地取望島峰,亦與表末參合。問島高及去表各幾何?答曰:島高四里五十五步;去表一百二里一百五十步。
[翻譯:假設測量海島,立兩根表高均為3丈,前後相距1000步,令后表與前表在同一直線上,從前表退行123 步,
人目著地觀測到島峰,從后表退行127步,人目著地觀測到島峰,問島高多少 島與前表相距多遠?
術曰:以表高乘表間為實;相多為法,除之。所得加表高,即得島高。求前表去島遠近者:以前表卻行乘表間為實;相多為法。除之,得島去表數。
(2)今有望松生山上,不知高下。立兩表齊,高二丈,前後相去五十步,令後表與前表參相直。從前表卻行七步四尺,薄地遙望松末,與表端參合。又望松本,入表二尺八寸。復從後表卻行八步五尺,薄地遙望松末,亦與表端參合。問松高及山去表各幾何?答曰:松高一十二丈二尺八寸;山去表一里二十八步、七分步之四。
術曰:以入表乘表間為實。相多為法,除之。加入表,即得松高。求表去山遠近者:置表間,以前表卻行乘之為實。相多為法,除之,得山去表。
(3)今有南望方邑,不知大小。立兩表東、西去六丈,齊人目,以索連之。令東表與邑 東南隅及東北隅參相直。當東表之北卻行五步,遙望邑西北隅,入索東端二丈二尺六寸半。又卻北行去表一十三步二尺,遙望邑西北隅,適與西表相參合。問邑方及邑去表各幾何?答曰:邑方三里四十三步、四分步之三;邑去表四里四十五步。
術曰:以入索乘後去表,以兩表相去除之,所得為景長;以前去表減之,不盡以為法。置後去表,以前去表減之,余以乘入索為實。實如法而一,得邑方。求去表遠近者:置後去表,以景長減之,余以乘前去表為實。實如法而一,得邑去表。
(4)今有望深谷,偃矩岸上,令勾高六尺。從勺端望谷底,入下股九尺一寸。又設重矩於上,其矩間相去三丈。更從勺端望谷底,入上股八尺五寸。問谷深幾何?答曰:四十一丈九尺。
術曰:置矩間,以上股乘之,為實。上、下股相減,余為法,除之。所得以勾高減之,即得谷深。
(5)今有登山望樓,樓在平地。偃矩山上,令勾高六尺。從勾端斜望樓足,入下股一丈二尺。又設重矩於上,令其間相去三丈。更從勾端斜望樓足,入上股一丈一尺四寸。又立小表於入股之會,復從勾端斜望樓岑端,入小表八寸。問樓高几何?答曰:八丈。
術曰:上、下股相減,余為法;置矩間,以下股乘之,如勾高而一。所得,以入小表乘之,為實。實如法而,即是樓高。
(6)今有東南望波口,立兩表南、北相去九丈,以索薄地連之。當北表之西卻行去表六丈,薄地遙望波口南岸,入索北端四丈二寸。以望北岸,入前所望表裡一丈二尺。又卻行,後去表一十三丈五尺。薄地遙望波口南岸,與南表參合。問波口廣幾何?答曰:一里二百步。
術曰:以後去表乘入索,如表相去而一。所得,以前去表減之,余以為法;復以前去表減後去表,余以乘入所望表裡為實,實如法而一,得波口廣。
(7)今有望清淵下有白石。偃矩岸上,令勾高三尺。斜望水岸,入下股四尺五寸。望白石,入下股二尺四寸。又設重矩於上,其間相去四尺。更從勾端斜望水岸,入上股四尺。以望白石,入上股二尺二寸。問水深幾何?答曰:一丈二尺。
術曰:置望水上、下股相減,余以乘望石上股為上率。又以望石上、下股相減,余以乘望水上股為下率。兩率相減,余以乘矩間為實;以二差相乘為法。實如法而一,得水深。
(8)今有登山望津,津在山南。偃矩山上,令勾高一丈二尺。從勾端斜望津南岸,入下股二丈三尺一寸。又望津北岸,入前望股里一丈八寸。更登高岩,北卻行二十二步,上登五十一步,偃矩山上。更從勾端斜望津南岸,入上股二丈二尺。問津廣幾何?答曰:二里一百二步。
術曰:以勾高乘下股,如上股而一。所得以勾高減之,余為法;置北行,以勾高乘之,如上股而一。所得以減上登,余以乘入股里為實。實如法而一,即得津廣。
(9)今有登山臨邑,邑在山南。偃矩山上,令勾高三尺五寸。令勾端與邑東南隅及東北隅參相直。從勾端遙望東北隅,入下股一丈二尺。又施橫勾於入股之會,從立勾端望西北隅,入橫勾五尺。望東南隅,入下股一丈八尺。又設重矩於上,令矩間相去四丈。更從立勾端望東南隅,入上股一丈七尺五寸。問邑廣長各幾何?答曰:南北長一里百步;東西廣一里三十三步、少半步。
術曰:以勾高乘東南隅入下股,如上股而一,所得減勾高,余為法;以東北隅下股減東南隅下股,余以乘矩間為實。實如法而一,得邑南北長也。求邑廣:以入橫勾乘矩間為實。實如法而一,即得邑東西廣。
《海島算經》由劉徽於三國魏景元四年(公元263年)所撰,本為《九章算術注》之第十卷,題為《重差》。唐初開始單行,體例亦是以應用問題集的形式。研究的對象全是有關高與距離的測量,所使用的工具也都是利用垂直關係所連接起來的測竿與橫棒。有人說是實用三角法的啟蒙,不過其內容並未涉及三角學中的正餘弦概念。所有問題都是利用兩次或多次測望所得的數據,來推算可望而不可及的目標的高、深、廣、遠。此卷書被收集於明成祖時編修的永樂大典中,現保存在英國劍橋大學圖書館。劉徽也曾對九章算數重編並加以註釋。全書共9題,全是利用測量來計算高深廣遠的問題,首題測算海島的高、遠,故得名。
秦九韶《表望浮屠》繼承《海島算經》
中國數學家白尚恕對海島算經有較詳細的論證。吳文俊院士論文《我國古代測望之學重差理論評介兼評數學史研究中的某些方法問題》 與《海島算經古證探源》兩篇論文對《海島算經》有詳細的論證,前文批評一些前人對《海島算經》的論證中添加歐幾里德幾何的平行線或利用相似形理論或後代的代數論證的方法,顛倒歷史,都是錯誤的方法,並提出正確的論證,必須以劉徽時代的出入相補原理為基礎,才能還原《海島算經》的本來面目。
《海島算經》在唐代傳入朝鮮、日本。最早向西方介紹《海島算經》的是19世紀來華傳教士偉烈亞力。他1852年在《北華捷報》(North China Herald,《字林西報》前身)發表的論文:《中國數學科學札記》(Jottings on the Sciences of Chinese Mathematics)。偉烈亞力在文中介紹了《海島算經》,說此書是“一部關於實用三角學的九個問題”。1913年日本數學史家三上義夫在其英文著作《中國與日本數學的發展》第五章《海島算經》 中譯出頭三則問題1932年法國數學家 L·van·Hee 翻譯《海島算經》全文
《海島算經》的英文翻譯本
3世紀劉徽《海島算經》運用二次、三次、四次測望法,是測量學歷史上領先的創造中外學者對《海島算經》的成就,給予很高的評價。《海島算經》的英譯者和研究者,美國數學家弗蘭克·斯委特茲,在比較西歐測量學從古代希臘、羅馬直到文藝復興時期的發展,認為希臘測量術,重點在測量器具的運用,而其數學水準遠不如劉徽《海島算經》,直到文藝復興時代,才差強達到《海島算經》水準。他還指出17世紀初義大利來華傳教士利瑪竇和中國徐光啟合著的《測量法義》十五題,並未能達到或超越《海島算經》。他結論;“簡而言之,在測量數學領域,中國人的成就,超越西方世界約一千年。”
《中國數學大系》一書中評價《海島算經》:“使中國測量學達到登峰造極的地步。在西歐直到16,17世紀,才出現二次測量術的記載,到18世紀,才有了三、四次測量之術,可見中國古代測量學的意境之深,功用之廣”。劉徽《海島算經》的測量術,實比歐洲早一千三百至一千五百年。
劉徽(生於公元250年左右),是中國數學史上一個非常偉大的數學家,在世界數學史上,也佔有傑出的地位.他的傑作《九章算術注》和《海島算經》,是我國最寶貴的數學遺產。
劉徽