辛流形

辛流形

具有某種特殊結構的微分流形,這種結構稱為辛結構。

目錄

正文


設M為一微分流形,又在M上具有一個二次非退化的閉外微分形式,則稱是M上的一個辛結構,又稱M為具辛結構的辛流形。微分流形的辛結構聯繫於向量空間的辛結構。設V是m維向量空間,在V上定義了一個反對稱、非退化的雙線性形式,即滿足:①反對稱性,,對任意成立;②非退化,若對任意,有,必有,則稱為向量空間V上的一個辛結構,又稱V 為具辛結構σ的辛向量空間。對於具辛結構的微分流形M,在每一點,將視為上的雙線性形式,即得出向量空間上的辛結構。具辛結構的向量空間 V或具辛結構的微分流形M都必須是偶數維的。
設M是微分流形,是它的餘切叢,又在上定義一個一次微分形式α,使當的局部坐標取為, 的局部坐標表為,的外微分就是上一個二次非退化閉外形式,其局部坐標表示為可作為的辛結構,稱它為自然辛結構。在這種辛結構下成為一個辛流形。這是一個最常見的辛流形。可以證明,若兩個微分流形M,N之間有微分同胚,由誘導出的餘切叢之間的映射就是這兩個辛流形之間保持自然辛結構的一個變換,稱為典則變換。
辛構典則換概念源析,近,辛流形及各流形質研究支。例,近偏微程論,餘切叢程及析,,典則換題化簡具。辛流形概念題量化。