共找到2條詞條名為傅里葉分析的結果 展開

傅里葉分析

機械工業出版社出版圖書

《傅里葉分析》是2011年機械工業出版社出版的圖書,作者是(美)Loukas Grafakos。

目錄

正文


章節目錄
傅里葉分析[機械工業出版社出版圖書]
傅里葉分析[機械工業出版社出版圖書]
出版說明
Preface
Chapter 1. Lp Spaces and Interpolation
1.1. Lp and Weak Lp
1.2. Convolution and Approximate Identities
1.3. Interpolation
1.4. Lorentz Spaces*
Chapter 2. Maximal Functions, Fourier Transform, and Distributions
2.1. Maximal Functions
2.2. The Schwartz Class and the Fourier Transform
2.3. The Class of Tempered Distributions
2.4. More about Distributions and the Fourier Transform*
2.5. Convolution Operators on Lp Spaces and Multipliers
2.6. Oscillatory Integrals
Chapter 3. Fourier Analysis on the Torus
3.1. Fourier Coefficients
3.2. Decay of Fourier Coefficients
3.3. Pointwise Convergence of Fourier Series
3.4. Divergence of Fourier Series and Bochner-Riesz Summability*
3.5. The Conjugate Function and Convergence in Norm
3.6. Multipliers, Transference, and Almost Everywhere Convergence*
3.7. Lacunary Series*
Chapter 4. Singular Integrals of Convolution Type
4.1. The Hilbert Transform and the Riesz Transforms
4.2. Homogeneous Singular Integrals and the Method of Rotations
4.3. The Calder6n-Zygmund Decomposition and Singular Integrals
4.4. Sufficient Conditions for Lp Boundedness
4.5. Vector-Valued Inequalities*
4.6. Vector-Valued Singular Integrals
Chapter 5. Littlewood-Paley Theory and Multipliers
5.1. Littlewood-Paley Theory
5.2. Two Multiplier Theorems
5.3. Applications of Littlewood-Paley Theory
5.4. The Haar System, Conditional Expectation, and Martingales*
5.5. The Spherical Maximal Function*
5.6. Wavelets
Chapter 6. Smoothness and Function Spaces
6.1. Riesz Potentials, Bessel Potentials, and Fractional Integrals
6.2. Sobolev Spaces
6.3. Lipschitz Spaces
6.4. Hardy Spaces*
6.5. Besov-Lipschitz and Triebel-Lizorkin Spaces*
6.6. Atomic Decomposition*
6.7. Singular Integrals on Function Spaces
Chapter 7. BMO and Carleson Measures
7.1. Functions of Bounded Mean Oscillation
7.2. Duality between H1 and BMO
7.3. Nontangential Maximal Functions and Carleson Measures
7.4. The Sharp Maximal Function
7.5. Commutators of Singular Integrals with BMO Functions*
Chapter 8. Singular Integrals of Nonconvolution Type
8.1. General Background and the Role of BMO
8.2. Consequences of L2 Boundedness
8.3. The T(1) Theorem
8.4. Paraproducts
8.5. An Almost Orthogonality Lemma and Applications
8.6. The Cauchy Integral of Calder6n and the T(b) Theorem*
8.7. Square Roots of Elliptic Operators*
Chapter 9. Weighted Inequalities
9.1. The Ap Condition
9.2. Reverse HSlder Inequality for Ap Weights and Consequences
9.3. The Au condition*
9.4. Weighted Norm Inequalities for Singular Integrals
9.5. Further Properties of Ap Weights*
Chapter 10. Boundedness and Convergence of Fourier Integrals
10.1. The Multiplier Problem for the Ball
10.2. Bochner-Riesz Means and the Carleson-SjSlin Theorem
10.3. Kakeya Maximal Operators
10.4. Fourier Transform Restriction and Bochner-Riesz Means
10.5. Almost Everywhere Convergence of Fourier Integrals*
10.6. Lp Boundedness of the Carleson Operator*
Appendix A. Gamma and Beta Functions
A.1. A Useful Formula
A.2. Definitions of F(z) and B(z, w)
A.3. Volume of the Unit Ball and Surface of the Unit Sphere
A.4. A Useful Integral
A.5. Meromorphic Extensions of B(z, w) and F(z)
A.6. Asymptotics of F(x) as x →∞
A.7. The Duplication Formula for the Gamma Function
Appendix B. Bessel Functions
B.I. Definition
B.2. Some Basic Properties
B.3. An Interesting Identity
B.4. The Fourier Transform of Surface Measure on Sn-1
B.5. The Fourier Transform of a Radial Function on Rn
B.6. Asymptotics of Bessel Functions
Appendix C. Rademacher Functions
C.1. Definition of the Rademacher Functions
C.2. Khintchine#s Inequalities
C.3. Derivation of Khintchine#s Inequalities
C.4. Khintchine#s Inequalities for Weak Type Spaces
C.5. Extension to Several Variables
Appendix D. Spherical Coordinates
D.1. Spherical Coordinate Formula
D.2. A useful change of variables formula
D.3. Computation of an Integral over the Sphere
D.4. The Computation of Another Integral over the Sphere
D.5. Integration over a General Surface
D.6. The Stereographic Projection
Appendix E. Some Trigonometric Identities and Inequalities
Appendix F. Summation by Parts
Appendix G. Basic Functional Analysis
Appendix H. The Minimax Lemma
Appendix I. The Schur Lemma
1.1. The Classical Schur Lemma
1.2. Schur#s Lemma for Positive Operators
1.3. An Example
Appendix J. The Whitney Decomposition of Open Sets in Rn
Appendix K. Smoothness and Vanishing Moments
K.I. The Case of No Cancellation
K.2. The Case of Cancellation
K.3. The Case of Three Factors
Bibliography
Index of Notation
Index
教輔材料申請表