董磊

山西大學教授

董磊,男,1979年生於河南新鄉,博士,教授,博士生導師,國家優秀青年科學基金獲得者,“青年三晉學者”特聘教授,山西省中青年拔尖創新人才。主要從事超高靈敏激光光譜在環境、醫療、工業應用方面的研究工作,在新型光聲光熱光譜領域,尤其是石英增強光聲光譜用於痕量氣體檢測方面取得了系列重要成果。解決了高靈敏石英增強光聲光譜從近紅外向長波中紅外和太赫茲波段應用拓展及與大功率光源結合的關鍵技術問題,發展了基於音叉式石英晶振用於新材料研究的感測新技術。主持國家自然科學基金4項,省部級基金3項,共發表SCI論文70餘篇,其中在Nat. Commun.,Sens Actuators B:Chem.,Appl. Phys. Lett.,Opt. Lett.,Opt. Express等高影響力的國際刊物上發表學術論文30餘篇。發表的唯一通訊作者總論文被他人正面引用已達105次,單篇他引最高次數為52次。以第一發明人授權發明專利11項。

人物經歷


簡歷:
2014.12-至今 山西大學激光光譜研究所 教授
2009.10-2014.12 山西大學激光光譜研究所 副教授
2008.06-2011.12 美國萊斯大學 博士后 合作導師:Frank K. Tittel
2007.07-2009.10 山西大學物理電子工程學院 講師
2002.09-2007.07 山西大學物理電子工程學院 獲博士學位 導師:賈鎖堂
1998.09-2002.07 山西大學物理電子工程學院 獲學士學位
近期代表性論文:
“Recent advances in quartz enhanced photoacoustic sensing” Appl.Phys. Rev. 5, 011106 (2018)
“Ppbv-level ethane detection using quartz-enhanced photoacoustic spectroscopy with a cintinuous-wave room temperature interband cascade laser” Sensors 18, 723 (2018)
“Application of acoustic micro-resonators in quartz-enhanced photoacoustic spectroscopy for trace gas analysis” Chem. Phys. Lett. 691,462-472 (2018)
“Beat frequency quartz-enhanced photoacoustic spectroscopy for fast and calibration-free continuous trace-gas monitoring” Nat. Commun. 8, 15331 (2017)
“Highly sensitive SO2 photoacoustic sensor for SF6 decomposition detection using a compact mW-level diode-pumped solid-state laser emitiing at 303nm” Opt. Express 25, 32581 (2017)
“Ppb-level H2S detection for SF6 decomposition based on a fiber-amplified telecommunication diode laser and a background-gas-induced high-Q photoacoustic cell” Appl. Phys. Lett. 111, 031109 (2017)
“Compact photoacoustic module for methane detection incorporating interband cascadelight emitting device” Opt. Express 25, 16761 (2017)
“Simultaneous dual-gas QEPAS detection based on a fundamental and overtone combined vibration of quartz tuning fork” Appl. Phys. Lett. 110, 121104 (2017)
“Sub-ppb nitrogen dioxide detection with a large linear dynamic rangeby use of a differential photoacoustic cell and a 3.5 W blue multimodediode laser” Sensor. Actuat. B: Chem. 247, 329–335 (2017)
“Double antinode excited quartz-enhanced photoacoustic spectrophone” Appl. Phys. Lett. 110, 021110 (2017)
“Development and field deployment of a mid-infrared methane sensor without pressure control using interband cascade laser absorption spectroscopy,” Sensor. Actuat. B: Chem. 244, 365-372 (2017)
“Quartz–enhanced photoacoustic spectrophones exploiting custom tuning forks: a review” Adv. Phys.: X 2, 169-187 (2016)
“Infrared Dual-Gas CH4/C2H6 Sensor Using Two Continuous-Wave Interband Cascade Lasers” IEEE photonic. Tech. L. 28, 2351-2354 (2016)
“Overtone resonance enhanced single-tube on-beam quartz enhanced photoacoustic spectrophone ” Appl. Phys. Lett. 109, 111103 (2016)
“Compact CH sensor system based on a continuous- wave, low powerconsumption, room temperature interband cascade laser”Appl. Phys. Lett. 108, 011106 (2016)
“Ppb-level mid-infrared ethane detection based on three measurement schemes using a 3.34-μm continuous-wave interband cascade laser” Appl. Phys. B 122, 185 (2016)
“Compact TDLAS based optical sensor for ppb-level ethane detection by use of a 3.34 um room-temperature CW interband cascade laser” Sensor. Actuat. B:Chem. 232, 188–194 (2016)
“Analysis of overtone flexural modes operation in quartz-enhanced photoacoustic spectroscopy” Opt. Express 24, A682-A692 (2016)
“Scattered light modulation cancellation method for sub-ppb-level NO detection in a LD-excited QEPAS system” Opt. Express 24, A752-A761 (2016)
“Compact TDLAS based sensor design using interband cascade lasers for mid-IR trace gas sensing” Opt. Express 24, A528-A535 (2016)
“Single-tube on-beam quartz-enhanced photoacoustic spectroscopy”Opt. Lett.41(5), 978-981 (2016)
“Impact of Humidity on Quartz-Enhanced Photoacoustic Spectroscopy Based CO Detection Using a Near-IR Telecommunication Diode Laser” Sensors 16, 162 (2016)
“Analysis of the electro-elastic properties of custom quartz tuning forks for optoacoustic gas sensing” Sensor. Actuat. B:Chem. 227, 539–546 (2016)
“Mid-infrared dual-gas sensor for simultaneous detection of methane and ethane using a single continuous-wave interband cascade laser” Opt. Express 24, 16973-16985 (2016)
“ Ppb-level formaldehyde detection using a CW room-temperature interband cascade laser and a miniature dense pattern multipass gas cell” Opt. Express 23, 19821-19830 (2015)
“Quartz enhanced photoacoustic H2S gas sensor based on a fiber-amplifier source and a custom tuning fork with large prong spacing” Appl. Phys. Lett. 107, 111104 (2015)
“Quartz-enhanced conductance spectroscopy for nanomechanical analysis of polymer wire” Appl. Phys. Lett.107,221903 (2015)
“Enhanced near-infrared QEPAS sensor for sub-ppm level H2S detection by means of a fiber amplified 1582 nm DFB laser” Sensor. Actuat. B:Chem. 221, 666–672 (2015)
“Position effects of acoustic micro-resonator in quartz enhancedphotoacoustic spectroscopy” Sensor. Actuat. B:Chem. 206, 364–370 (2015)
“Ppb-level QEPAS NO2 sensor by use of electrical modulationcancellation method with a high power blue LED” Sensor. Actuat. B:Chem. 208,173–179 (2015)
“Fiber-Amplifier-Enhanced QEPAS Sensor for Simultaneous Trace Gas Detection of NH and HS” Sensors 15, 26743-26755 (2015)
“Near-IR telecommunication diode laser based double-pass QEPAS sensor for atmospheric CO2 detection” Laser Phys. 25, 125601 (2015)
“Design and Optimization of QTF Chopper for Quartz-Enhanced Photoacoustic Spectroscopy” Int. J. Thermophys. 36, 1289–1296 (2015)
“Optical Detection Technique Using Quartz-Enhanced Photoacoustic Spectrum”Int. J. Thermophys. 36,1297–1304 (2015)
“Multi-Quartz Enhanced Photoacoustic Spectroscopy with Different Acoustic Microresonator Configurations” J. Spectrosc. 2015, 218419 (2015)
“Quartz-enhanced photoacoustic spectroscopy exploiting tuning fork overtone modes” Appl. Phys. Lett. 107, 231102 (2015)
“Compact sound-speed sensor for quartz enhanced photoacoustic spectroscopy based applications” Rev. of Sci. Instrum. 86, 044903 (2015)
“Double acoustic microresonator quartz-enhanced photoacoustic spectroscopy” Opt. Lett. 39:2479-2482 (2014)
“Ultra-sensitive carbon monoxide detection by using EC-QCL based quartz-enhanced photoacoustic spectroscopy” Appl. Phys. B 107:275-283 (2012)
“Compact QEPAS sensor for trace methane and ammonia detection in impure hydrogen.” Appl Phys B107:459-467 (2012)
“Ppb-level detection of nitric oxide using an external cavity quantum cascade laser based QEPAS sensor.” Opt. Express19: 24037-24045 (2011)
"QEPAS spectrophones: design, optimization and performance."Appl Phys B 100: 627-635 (2010)
“Modulation cancellation method for isotope O/O ratio measurements in water” Opt. Express 20:3401-3407 (2012)
"Modulation cancellation method for measurements of small temperature differences in a gas." Optics Letters 36: 460-462 (2011)
"Modulation cancellation method in laser spectroscopy." Appl. Phys. B 103: 735-742 (2011)
"QEPAS for chemical analysis of multi-component gas mixtures." App. Phys. B 101: 649-659 (2010)
"NO trace gas sensor based on quartz enhanced photoacoustic spectroscopy and external cavity quantum cascade laser." App. Phys. B 100: 125-130 (2010)
"QEPAS detector for rapid spectral measurements." App. Phys. B 100: 173-180 (2010)
1.
“Recent advances in quartz enhanced photoacoustic sensing” Appl.Phys. Rev. 5, 011106 (2018)
2.
“Ppbv-level ethane detection using quartz-enhanced photoacoustic spectroscopy with a cintinuous-wave room temperature interband cascade laser” Sensors 18, 723 (2018)
3.
“Application of acoustic micro-resonators in quartz-enhanced photoacoustic spectroscopy for trace gas analysis” Chem. Phys. Lett. 691,462-472 (2018)
4.
“Beat frequency quartz-enhanced photoacoustic spectroscopy for fast and calibration-free continuous trace-gas monitoring” Nat. Commun. 8, 15331 (2017)
5.
“Highly sensitive SO2 photoacoustic sensor for SF6 decomposition detection using a compact mW-level diode-pumped solid-state laser emitiing at 303nm” Opt. Express 25, 32581 (2017)
6.
“Ppb-level H2S detection for SF6 decomposition based on a fiber-amplified telecommunication diode laser and a background-gas-induced high-Q photoacoustic cell” Appl. Phys. Lett. 111, 031109 (2017)
7.
“Compact photoacoustic module for methane detection incorporating interband cascadelight emitting device” Opt. Express 25, 16761 (2017)
8.
“Simultaneous dual-gas QEPAS detection based on a fundamental and overtone combined vibration of quartz tuning fork” Appl. Phys. Lett. 110, 121104 (2017)
9.
“Sub-ppb nitrogen dioxide detection with a large linear dynamic rangeby use of a differential photoacoustic cell and a 3.5 W blue multimodediode laser” Sensor. Actuat. B: Chem. 247, 329–335 (2017)
10.
“Double antinode excited quartz-enhanced photoacoustic spectrophone” Appl. Phys. Lett. 110, 021110 (2017)
11.
“Development and field deployment of a mid-infrared methane sensor without pressure control using interband cascade laser absorption spectroscopy,” Sensor. Actuat. B: Chem. 244, 365-372 (2017)
12.
“Quartz–enhanced photoacoustic spectrophones exploiting custom tuning forks: a review” Adv. Phys.: X 2, 169-187 (2016)
13.
“Infrared Dual-Gas CH4/C2H6 Sensor Using Two Continuous-Wave Interband Cascade Lasers” IEEE photonic. Tech. L. 28, 2351-2354 (2016)
14.
“Overtone resonance enhanced single-tube on-beam quartz enhanced photoacoustic spectrophone ” Appl. Phys. Lett. 109, 111103 (2016)
15.
“Compact CH sensor system based on a continuous- wave, low powerconsumption, room temperature interband cascade laser”Appl. Phys. Lett. 108, 011106 (2016)
16.
“Ppb-level mid-infrared ethane detection based on three measurement schemes using a 3.34-μm continuous-wave interband cascade laser” Appl. Phys. B 122, 185 (2016)
17.
“Compact TDLAS based optical sensor for ppb-level ethane detection by use of a 3.34 um room-temperature CW interband cascade laser” Sensor. Actuat. B:Chem. 232, 188–194 (2016)
18.
“Analysis of overtone flexural modes operation in quartz-enhanced photoacoustic spectroscopy” Opt. Express 24, A682-A692 (2016)
19.
“Scattered light modulation cancellation method for sub-ppb-level NO detection in a LD-excited QEPAS system” Opt. Express 24, A752-A761 (2016)
20.
“Compact TDLAS based sensor design using interband cascade lasers for mid-IR trace gas sensing” Opt. Express 24, A528-A535 (2016)
21.
“Single-tube on-beam quartz-enhanced photoacoustic spectroscopy”Opt. Lett.41(5), 978-981 (2016)
22.
“Impact of Humidity on Quartz-Enhanced Photoacoustic Spectroscopy Based CO Detection Using a Near-IR Telecommunication Diode Laser” Sensors 16, 162 (2016)
23.
“Analysis of the electro-elastic properties of custom quartz tuning forks for optoacoustic gas sensing” Sensor. Actuat. B:Chem. 227, 539–546 (2016)
24.
“Mid-infrared dual-gas sensor for simultaneous detection of methane and ethane using a single continuous-wave interband cascade laser” Opt. Express 24, 16973-16985 (2016)
25.
“ Ppb-level formaldehyde detection using a CW room-temperature interband cascade laser and a miniature dense pattern multipass gas cell” Opt. Express 23, 19821-19830 (2015)
26.
“Quartz enhanced photoacoustic H2S gas sensor based on a fiber-amplifier source and a custom tuning fork with large prong spacing” Appl. Phys. Lett. 107, 111104 (2015)
27.
“Quartz-enhanced conductance spectroscopy for nanomechanical analysis of polymer wire” Appl. Phys. Lett.107,221903 (2015)
28.
“Enhanced near-infrared QEPAS sensor for sub-ppm level H2S detection by means of a fiber amplified 1582 nm DFB laser” Sensor. Actuat. B:Chem. 221, 666–672 (2015)
29.
“Position effects of acoustic micro-resonator in quartz enhancedphotoacoustic spectroscopy” Sensor. Actuat. B:Chem. 206, 364–370 (2015)
30.
“Ppb-level QEPAS NO2 sensor by use of electrical modulationcancellation method with a high power blue LED” Sensor. Actuat. B:Chem. 208,173–179 (2015)
31.
“Fiber-Amplifier-Enhanced QEPAS Sensor for Simultaneous Trace Gas Detection of NH and HS” Sensors 15, 26743-26755 (2015)
32.
“Near-IR telecommunication diode laser based double-pass QEPAS sensor for atmospheric CO2 detection” Laser Phys. 25, 125601 (2015)
33.
“Design and Optimization of QTF Chopper for Quartz-Enhanced Photoacoustic Spectroscopy” Int. J. Thermophys. 36, 1289–1296 (2015)
34.
“Optical Detection Technique Using Quartz-Enhanced Photoacoustic Spectrum”Int. J. Thermophys. 36,1297–1304 (2015)
35.
“Multi-Quartz Enhanced Photoacoustic Spectroscopy with Different Acoustic Microresonator Configurations” J. Spectrosc. 2015, 218419 (2015)
36.
“Quartz-enhanced photoacoustic spectroscopy exploiting tuning fork overtone modes” Appl. Phys. Lett. 107, 231102 (2015)
37.
“Compact sound-speed sensor for quartz enhanced photoacoustic spectroscopy based applications” Rev. of Sci. Instrum. 86, 044903 (2015)
38.
“Double acoustic microresonator quartz-enhanced photoacoustic spectroscopy” Opt. Lett. 39:2479-2482 (2014)
39.
“Ultra-sensitive carbon monoxide detection by using EC-QCL based quartz-enhanced photoacoustic spectroscopy” Appl. Phys. B 107:275-283 (2012)
40.
“Compact QEPAS sensor for trace methane and ammonia detection in impure hydrogen.” Appl Phys B107:459-467 (2012)
41.
“Ppb-level detection of nitric oxide using an external cavity quantum cascade laser based QEPAS sensor.” Opt. Express19: 24037-24045 (2011)
42.
"QEPAS spectrophones: design, optimization and performance."Appl Phys B 100: 627-635 (2010)
43.
20
44.
"Modulation cancellation method for measurements of small temperature differences in a gas." Optics Letters 36: 460-462 (2011)
45.
"Modulation cancellation method in laser spectroscopy." Appl. Phys. B 103: 735-742 (2011)
46.
"QEPAS for chemical analysis of multi-component gas mixtures." App. Phys. B 101: 649-659 (2010)
47.
"NO trace gas sensor based on quartz enhanced photoacoustic spectroscopy and external cavity quantum cascade laser." App. Phys. B 100: 125-130 (2010)
48.
"QEPAS detector for rapid spectral measurements." App. Phys. B 100: 173-180 (2010)