朱鴻

清朝歷史人物

朱鴻,字雲陸,秀水人。清朝嘉慶七年進士,改翰林院庶吉士,散館授編修。擢御史,歷給事中,出官督理湖南糧儲道。研精算學。同郡錢儀吉撰三國會要,集乾象、景初二術成,嘗為作注。烏程陳傑時為台官博士,陽湖董祐誠亦客京邸,皆日從講數,各出所得相質問。舊無橢圓求周術,為祐誠言,圜柱斜剖,則成橢員,可以句股形求之。祐誠既發明其說,系以圖釋。初得杜德美割圜九術寫本,以示祐誠,創圖解三卷。

人物簡介


典籍記載
既成,復得密率捷法於李潢家,則蒙古監正明安圖師弟續繹之書也,與傳寫本互異。鴻曾依杜法步算,徑一者,周三一四一五九二六五三五八九七九三二三八四六二六四三一八六三六七四七二二七九五一四,周十者,徑三一八三零九八八六一八三七九零六七一五三七七六七五四六六九六三八九零五六六六一。徐有玉采入務民義齋算學中。道光十年後,辭官仍居京師,撰考工記車制參解。又評程氏易疇考工創物小記,多所糾正雲。
博啟,字繪亭,滿洲正白旗人。乾隆中,官欽天監監副。嘗因句股和較之術,前人論之極詳,獨句股形中所容之方邊、員徑、垂線三事,尚缺而未備。爰以三事分配和較,創法六十。惜其書未刊,法不傳。今所傳者,惟有方邊及垂線求句、股、弦一題。法用平行線剖容方冪為四小句股形,借垂線為小句股和,借方邊為小弦,求小句小股。以小股與垂線比,若方邊與句比;以小句與垂線比,若方邊與弦比。道光初,方履亨官監正,每舉此題課士。其後得甘泉羅士琳力為表章,博術乃復明於世。
羅論云:“曩者聞方慎菴監正言繪亭監副有是法,失傳。因仿監副遺法,用平行線剖半員冪為四小句股形,以半圓徑減垂線餘,借為小句股和,借半員為小弦,求得小句、小股。以小股比垂線,若半員徑比股;以小股比股,若半員徑比弦。又以半員徑減方邊,得較。用平行線剖較冪為四小句股形,借半員徑為小句股和,借較為小弦,求得小句、小股。以小股比半員徑,若方邊比句;以小句比半員徑,若方邊比股,以小股比股,若較比弦。用補副監之遺。復用天元術演得三事和較六十題,更立天、地兩元為廣例二十五術,撰句股容三事拾遺四卷。更試變通其術,御以八線,取方邊用方斜率,得容方中之斜線。以垂線為一率,半徑為二率,斜線為三率,求得四率為正割。檢八線表得度用,與四十五度相加減,得垂線所分之大小兩弧,副以半徑為一率,垂線為二率,小弧正割為三率,求得四率為句。如以大弧正割為三率,求得四率為股,又如以大小兩弧之兩正切為三率,求得四率,為大小兩弧之兩分弦,相亻並得弦餘。二題仿此,其得數同,而尾數有奇零。以八線表所列之數至單位止,單位以下,棄其餘分,故不能如句股與天元所得之密合。或有妄詆天元術不能馭三角和較者,抑知天元創於宋、明之間,安能逆知西法之有三角而豫為立法?要在學者善為會通耳。試設平三角形,有一角而角在兩邊之中,有大邊與對邊和,有小邊與對邊和,求三道及垂線,此西人常法所不能御者。若立天元一術,則任求何邊或和數或較數,皆一平方即得。然則天元之與西法,其優劣可見矣。”