競賽數學

競賽數學

隨著數學競賽的發展,已逐漸形成一門特殊的數學學科——競賽數學。

相關背景


隨著數學競賽的發展,已逐漸形成一門特殊的數學學科——競賽數學。它涉及到數學競賽的內容、思想和方法;也涉及到數學競賽教育和數學課外教育的本質、方法、規律和途徑問題,課外學習與課內學習的關係問題,普及與提高問題,數學尖子生的發現和培養問題,輔導教師的進修和提高問題,命題和解題研究的問題等等。圍繞著數學競賽而展開的各種活動已經搭起了一個數學教育新分支的框架,其特點是以開發智力為根本目的、以解決問題為基本形式、以競賽數學為主要內容。最本質的是對中學生進行“競賽數學”的教育。這種教育的性質是:較高層次的基礎教育、開發智力的素質教育、生動活潑的業餘教育、現代數學的普及教育。以IMO的200道試題為主題,包括候選題和各國高水平的競賽內容,已經積澱出一個數學新層面,成為競賽數學(或奧林匹克數學)。這是帶有教育目的的數學,這是在競賽教育中形成的教育數學。競賽數學的內容和方法四大支柱是:代數,幾何,初等數論,組合初步(俗稱代數題、幾何題、算術題和智力題)。

主要特徵


競賽數學特徵總結競賽數學的內容與方法,可以概括它的四個基本特徵:位於中間數學,鄰接研究數學,展示藝術數學,構成教育數學。
一. 位於中間數學。這種中間性也是綜合**叉性和橋樑性,表現在三個方面:(1)中學數學與大學數學之間(2)學校數學與研究數學之間(3)嚴肅數學與趣味數學之間。
二. 鄰接研究數學(1)內容的新穎性(2)方法的創造性數學競賽題代表了活的數學。解競賽題雖離不開一般的思維規律,離不開數學知識,也有一些使用頻率較大的方法和技巧,但大都沒有常規模式可套,也無萬能範本可循。且賽題內容不斷更新,重要的是整體全局上的洞察力、敏銳的直覺和獨創性的構思。
三. 展示藝術數學 競賽數學把現代化的內容與趣味性的陳述、獨創性的技巧結合起來,充分展示了數學的統一美、對稱美和奇異美。有的問題所涉及的知識不多,一個證明的過程幾乎全是藝術的構造或構造的藝術。(1)構題的趣味性(2)解法的技巧性
四. 構成教育數學 由於競賽數學本能地展示了數學思想,生動地普及了數學文化,因而具有一定的教育價值,表現為選拔功能,激勵功能和導向功能。如: 1. 發現人才、選拔人才和培養人才 2. 激勵青少年學習數學的興趣 3. 為中學數學教材改革進行過渡 4. 強化能力培養的教學導向 5. 促進中學數學教師的知識更新 6. 為“第二課堂”增添活數學的內容 7. 為初等數學研究開拓新的領域 8. 為數學方法論的研究注入新鮮活力。
綜上所述,競賽數學是一種教育數學,它具有教育的功能,並表現出中間性和藝術性。