二次曲線族
二次曲線族
二次曲線族是二次曲線的集合,指具有某種共同性質的二次曲線的全體,它可簡化求適合一定條件的二次曲線的方程的步驟,隨著獨立參數個數的不同,把二次曲線族按其參數的個數而分為單參數二次曲線族、雙參數二次曲線族等。
在二次曲線的方程
中,二次項的係數不全為零,不妨設,那麼以a除方程兩邊,所得到的方程
仍然表示同一條曲線,這個方程中含有五個獨立的係數(亦稱參數),如果給這些參數各種不同的數值,可得到各種不同的曲線,形成一族二次曲線,稱它為 二次曲線族。又隨著獨立參數個數的不同,把二次曲線族按其參數的個數而分為 單參數二次曲線族、雙參數二次曲線族等。例如:
如果二次方程(1)的參數滿足,那麼這二次方程所含的獨立參數的個數就由五個減到三個而成為三參數二次曲線族,即 圓族。
如果二次方程(1)的參數滿足 ,那麼這二次方程所含的獨立參數的個數就由五個減到四個而成為四參數二次曲線族,即 拋物線族。
如果二次方程(1)的參數滿足 ,那麼這二次方程所含的獨立參數的個數並沒有減少,仍為五個獨立參數,是五參數二次曲線族,即 中心二次曲線族。
二次曲線族可簡化求適合一定條件的二次曲線的方程的步驟:
1.給定兩條二次曲線,,經過這兩條二次曲線的所有交點(一般有4個)的二次曲線族的方程為,式中是不同時為零的參數。
2.經過兩條直線與二次曲線的交點的二次曲線族的方程為,式中λ是參數。
3.經過4點的二次曲線族的方程為,式中λ是參數,。
4.與已知兩直線分別相切於已知點)的二次曲線族的方程為,式中,λ是參數,例如,已知和AB邊上的中線OC上一點P,,則與兩直線AC,BC分別相切於點A,B,且過點P的二次曲線為,當時,圖形為拋物線;當時,圖形為橢圓;當時,圖形為雙曲線。
5.與二次曲線相切於已知點的二次曲線族的方程為,式中λ,μ是參數, 。
下面僅討論單參數二次曲線族,又稱為二次曲線系。
定理1 如果給定兩條二次曲線 ,那麼含有一個參數λ的方程:
是表示經過這兩條二次曲線的所有交點(一般有四個)的二次曲線族,為了避免將曲線遺漏掉,也將這二次曲線族的方程寫成
定理1的證明過程與直線系的定理證明相仿。
定理2 如果已知兩直線和一條二次曲線,那麼含有一個參數λ的方程
是表示經過兩直線與二次曲線的交點的二次曲線族。
證明 因為直線與二次曲線的交點坐標滿足式(2),所以曲線(2)過它們的交點,又方程(2)的次數不大於二次,所以,它是單參數二次曲線族。
定理3如果已知四點經過點的直線方程為 (這裡),那麼含有一個參數的方程
是表示經過這四點的二次曲線族。
定理4 與已知直線分別相切於已知點,的二次曲線族的方程為
這裡直線 的方程是。