共找到3條詞條名為周淵的結果 展開

周淵

北京航空航天大學副教授

大學教授


教育背景

Ph. D. (2010), 2008.3-2010.8, Department of Mathematics and Statistics, University of Jyväskylä, Finland. Advisors: Professor Pekka Koskela.
Ph. D. (2009), 2004.9-2009.7, School of Mathematical Sciences, Beijing Normal University, People's Republic of China. Advisor: Professor Dachun Yang
B. S. (2004), 2000.8-2004.7, School of Mathematical Sciences, Beijing Normal University, People's Republic of China.

發表論文

[26]A. Gogatishvili, P. Koskela and Yuan Zhou, Characterizations of Besov and Triebel -Lizorkin spaces on metric measure spaces, Forum Math. (2011), DOI: 10.1515/FORM.2011.135.
[25]P. Koskela, D. Yang and Yuan Zhou, Pointwise characterizations of Besov and Triebel-Lizorkin spaces and quasiconformal mappings,Advance in Math. 226 (2011), 3579-3621.
[24]Yuan Zhou, Hajlasz -Sobolev imbedding and extension,J. Math. Anal. Appl. 382 (2011), 577-593.
[23]D. Yang and Yuan Zhou, New properties of Besov and Triebel-Lizorkin spaces on RD-spaces,manuscripta math.134 (2011), 59-90.
[22]D. Yang and Yuan Zhou, Localized Hardy spacesH related to admissible functions on RD-spaces and applications to Schrödinger operators,Trans. Amer. Math. Soc.363 (2011), 1197-1239.
[21]M. Bownik, B. Li, D. Yang and Yuan Zhou, Anisotropic singular integrals in product spaces,Sci. China Math. 53 (2010), 3163–3178.
[20]L. Liu, D. Yang and Yuan Zhou, Boundedness of generalized Riesz potentials on spaces of homogeneous type,Math. Inequal. Appl. 13 (2010), 867-885.
[19]D. Yang and Yuan Zhou, Radial maximal function characterizations of Hardy spaces on RD-spaces and their applications,Math. Ann. 346 (2010), 307-333.
[18]P. Koskela, D. Yang and Yuan Zhou, A characterization of Hajlasz-Sobolev and Triebel-Lizorkin spaces via grand Littlewood-Paley functions,J. Funct. Anal. 258 (2010), 2637-2661.
[17]D. Yang and Yuan Zhou, Some new characterizations on spaces of functions with bounded mean oscillation,Math. Nachr.283 (2010), 588-614.
[16]D.-C. Chang, D. Yang and Yuan Zhou, Boundedness of linear operators in product Hardy spaces and its application,J. Math. Soc. Japan. 62 (2010) 321-353.
[15]P. Koskela, D. Yang and Yuan Zhou, A Jordan Sobolev extension domain,Ann. Acad. Sci. Fenn. Math. 35 (2010), 309-320.
[14]Da. Yang, Do. Yang and Yuan Zhou, Localized BMO spaces on RD-spaces and their applications to Schrödinger operators,Commun. Pure Appl. Anal. 9 (2010), 779-812.
[13]Da. Yang, Do. Yang and Yuan Zhou, Localized Campanato spaces related to admissible functions on RD-spaces and applications to Schrödinger operators,Nogaya. J. Math. 198 (2010), 77-119.
[12]M. Bownik, B. Li, D. Yang and Yuan Zhou, Weighted anisotropic product Hardy spaces and boundedness of sublinear operators,Math. Nachr. 283 (2010), 392-442.
[11]D. Yang and Yuan Zhou, A boundedness criterion via atoms for linear operators in Hardy spaces,Constr. Approx. 29 (2009), 207-218.
[10]Da. Yang, Do. Yang and Yuan Zhou, Endpoint properties of localized Riesz transforms and fractional integrals associated to Schrödinger operators,Potential Analysis 30 (2009), 271-300.
[9]G. Hu, D. Yang and Yuan Zhou, Boundedness of singular integrals in Hardy spaces on spaces of homogeneous type,Taiwanese J. Math. 13 (2009), 91-135.
[8]R. Jiang, D. Yang and Yuan Zhou, Orlicz-Hardy spaces associated with operators,Sci. China Ser. A 52 (2009), 1042-1080.
[7]R. Jiang, D. Yang and Yuan Zhou, Localized Hardy spaces associated with operators,Applicable Analysis, 88 (2009), 1409-1427.
[6]Yuan Zhou, Boundedness of sublinear operators in Herz-type Hardy spaces,Taiwanese J. Math. 13 (2009), 983-996.
[5]D. Yang and Yuan Zhou, Boundedness of sublinear operators in Hardy spaces on RD-spaces via atoms,J. Math. Anal. Appl. 339 (2008), 622-635.
[4]Yuan Zhou, Some endpoint estimates of local Littlewood-paley operators, Journal of Beijing Normal University(Natural Science), 44 (2008), 577-580.
[3]D. Yang and Yuan Zhou, Non-Gaussian upper estimates for heat kernels on spaces of homogeneous type,Proc. Amer. Math. Soc.136 (2008), 2155-2163.
[2]M. Bownik, B. Li, D. Yang and Yuan Zhou, Weighted anisotropic Hardy spaces and their applications in boundedness of sublinear operators,Indiana Univ. Math. J. 57 (2008), 3065-3100.
[1]D. Yang and Yuan Zhou, Boundedness of Marcinkiewicz integrals and their commutators inH(R×R),Sci. China Ser. A49 (2006), 770-790.

工作簡歷


2011.8—, Associate Professor at Beijing University of Aeronautics and Astronautics (Beihang University), P. R. China.
2010.10—2011.7, Postdoc at University of Jyväskylä, Finland.

獲得榮譽


2020年8月,入選2020年度國家傑出青年科學基金建議資助項目申請人名單。