共找到7條詞條名為工程熱力學的結果 展開

工程熱力學

熱力學學科分支

熱力學是研究熱現象中,物質系統在平衡時的性質和建立能量的平衡關係,以及狀態發生變化時,系統與外界相互作用的學科。工程熱力學是熱力學最先發展的一個分支,它主要研究熱能與機械能和其他能量之間相互轉換的規律及其應用,是機械工程的重要基礎學科之一。

基本任務


工程熱力學書籍
工程熱力學書籍
通過對熱力系統、熱力平衡、熱力狀態、熱力過程、熱力循環和工質的分析研究,改進和完善熱力發動機、製冷機和熱泵的工作循環,提高熱能利用率和熱功轉換效率。
為此,必須以熱力學基本定律為依據,探討各種熱力過程的特性;研究氣體和液體的熱物理性質,以及蒸發和凝結等相變規律;研究工質特性也是分析某些類型製冷機所必需的。現代工程熱力學還包括諸如燃燒等化學反應過程,溶解吸收或解吸等物理化學過程,這就又涉及化學熱力學方面的基本知識。

研究內容


工程熱力學是關於熱現象的宏觀理論,研究的方法是宏觀的,它以歸納無數事實所得到的熱力學第一定律熱力學第二定律和熱力學第三定律作為推理的基礎,通過物質的壓力、溫度、比容等宏觀參數和受熱、冷卻、膨脹、收縮等整體行為,對宏觀現象和熱力過程進行研究。
工程熱力學書籍
工程熱力學書籍
這種方法,把與物質內部結構有關的具體性質,當作宏觀真實存在的物性數據予以肯定,不需要對物質的微觀結構作任何假設,所以分析推理的結果具有高度的可靠性,而且條理清楚。這是它的獨特優點。

歷史發展


工程熱力學書籍
工程熱力學書籍
古代人類早就學會了取火和用火,不過後來才注意探究熱、冷現象的實質。但直到17世紀末,人們還不能正確區分溫度和熱量這兩個基本概念的本質。在當時流行的“熱質說”統治下,人們誤認為物體的溫度高是由於儲存的“熱質”數量多。1709~1714年華氏溫標和1742~1745年攝氏溫標的建立,才使測溫有了公認的標準。隨後又發展了量熱技術,為科學地觀測熱現象提供了測試手段,使熱學走上了近代實驗科學的道路。
1798年,朗福德觀察到用鑽頭鑽炮筒時,消耗機械功的結果使鑽頭和筒身都升溫。1799年,英國人戴維用兩塊冰相互摩擦致使表面融化,這顯然無法由“熱質說”得到解釋。1842年,邁爾提出了能量守恆理論,認定熱是能的一種形式,可與機械能互相轉化,並且從空氣的定壓比熱容與定容比熱容之差計算出熱功當量。
英國物理學家焦耳於1840年建立電熱當量的概念,1842年以後用不同方式實測了熱功當量。1850年,焦耳的實驗結果已使科學界徹底拋棄了“熱質說”。公認能量守恆、能的形式可以互換的熱力學第一定律為客觀的自然規律。能量單位焦耳就是以他的名字命名的。
熱力學的形成與當時的生產實踐迫切要求尋找合理的大型、高效熱機有關。1824年,法國人卡諾提出著名的卡諾定理,指明工作在給定溫度範圍的熱機所能達到的效率極限,這實質上已經建立起熱力學第二定律。但受“熱質說”的影響,他的證明方法還有錯誤。1848年,英國工程師開爾文根據卡諾定理制定了熱力學溫標。1850年和1851年,德國克勞修斯和開爾文先後提出了熱力學第二定律,並在此基礎上重新證明了卡諾定理。
1850~1854年,克勞修斯根據卡諾定理提出並發展了熵的概念。熱力學第一定律和第二定律的確認,對於兩類“永動機”的不可能實現作出了科學的最後結論,正式形成了熱現象的宏觀理論熱力學。同時也形成了“工程熱力學”這門技術科學,它成為研究熱機工作原理的理論基礎,使內燃機、汽輪機、燃氣輪機和噴氣推進機等相繼取得迅速進展。
與此同時,在應用熱力學理論研究物質性質的過程中,還發展了熱力學的數學理論,找到了反映物質各種性質的相應的熱力學函數,研究了物質在相變、化學反應和溶液特性方面所遵循的各種規律。1906年,德國的能斯脫在觀察低溫現象和化學反應中發現熱定理;1912年,這個定理被修改成熱力學第三定律的表述形式。
二十世紀初以來,對超高壓、超高溫水蒸汽等物性,和極低溫度的研究不斷獲得新成果。隨著對能源問題的重視,人們對與節能有關的複合循環、新型的複合工質的研究發生了很大興趣。