放大器電路
放大電路
放大器電路,或稱放大電路,能增加信號的輸出功率。它透過電源取得能量來源,以控制輸出信號的波形與輸入信號一致,但具有較大的振幅。依此來講,放大器電路亦可視為可調節的輸出電源,用來獲得比輸入信號更強的輸出信號。
放大器的四種基本類型是電壓放大器、電流放大器、互導放大器和互阻放大器。進一步的區別在於輸出是否是輸入的線性或非線性表示。放大器也可以通過在信號鏈中的物理位置來分類。
主條目:放大器的性能指標
放大器質量是通過以下一系列指標來衡量的:
● 增益,輸出與輸入信號的幅度之間的比率
● 帶寬,有用的頻率範圍的寬度
● 效率,輸出功率和總功率消耗之間的比率
● 線性,輸入和輸出之間比例性的程度
● 雜訊,混入到輸出的不想聽到的聲音
● 輸出動態範圍,最大與最小的有用輸出電平的比例
● 擺率,輸出的最大變化率
● 上升時間,建立時間和過沖的階躍響應表徵
● 穩定性,避免自振蕩的能力
增加電信號幅度或功率的電子電路。應用放大電路實現放大的裝置稱為放大器。它的核心是電子有源器件,如電子管、晶體管等。為了實現放大,必須給放大器提供能量。常用的能源是直流電源,但有的放大器也利用高頻電源作為泵浦源。放大作用的實質是把電源的能量轉移給輸出信號。輸入信號的作用是控制這種轉移,使放大器輸出信號的變化重複或反映輸入信號的變化。現代電子系統中,電信號的產生、發送、接收、變換和處理,幾乎都以放大電路為基礎。20世紀初,真空三極體的發明和電信號放大的實現,標誌著電子學發展到一個新的階段。20世紀40年代末晶體管的問世,特別是60年代集成電路的問世,加速了電子放大器以至電子系統小型化和微型化的進程。
現代使用最廣的是以晶體管(雙極型晶體管或場效應晶體管)放大電路為基礎的集成放大器。大功率放大以及高頻、微波的低雜訊放大,常用分立晶體管放大器。高頻和微波的大功率放大主要靠特殊類型的真空管,如功率三極體或四極管、磁控管、速調管、行波管以及正交場放大管等。
放大電路的前置部分或集成電路元件變質引起高頻振蕩產生"噝噝"聲,檢查各部分元件,若元件無損壞,再在磁頭信號線與地間並接一個1000PF~0.047F的電容,"噝噝"聲若不消失,則需要更換集成塊。
(1)靜態工作點合適:合適的直流電源、合適的電路(元件)參數。
(2)動態信號能夠作用於晶體管的輸入迴路,在負載上能夠獲得放大了的動態信號。
(3)對實用放大電路的要求:共地、直流電源種類儘可能少、負載上無直流分量。
放大電路本身的特點:
一、有靜態和動態兩種工作狀態,所以有時往往要畫出它的直流通路和交流通路才能進行分析;
二、電路往往加有負反饋,這種反饋有時在本級內,有時是從后級反饋到前級,所以在分析這一級時還要能“瞻前顧後”。在弄通每一級的原理之後就可以把整個電路串通起來進行全面綜合。
放大倍數又稱增益,它是衡量放大電路放大能力的指標。根據需要處理的輸入和輸出量的不同,放大倍數有電壓、電流、互阻、互導和功率放大倍數等,其中電壓放大倍數應用最多。
放大電路的輸入電阻是從輸入端向放大電路內看進去的等效電阻,它等於放大電路輸出端接實際負載電阻后,輸入電壓與輸入電流之比,即Ri=Ui/Ii。對於信號源來說,輸入電阻就是它的等效負載。
輸入電阻的大小反映了放大電路對信號源的影響程度。輸入電阻越大,放大電路從信號源汲取的電流(即輸入電流)就越小,信號源內阻上的壓降就越小,其實際輸入電壓就越接近於信號源電壓,常稱為恆壓輸入。反之,當要求恆流輸入時,則必須使Ri<阻抗匹配。
對負載而言,放大電路的輸出端可等效為一個信號源。輸出電阻越小,輸出電壓受負載的影響就越小,若Ro=0,則輸出電壓的大小將不受RL的大小影響,稱為恆壓輸出。當RL<
放大器可以依據它們的輸入與輸出屬性區分規格。它們顯示增益的性質,即輸出信號和輸入信號幅度之間的比例係數。出依其增益的種類,可區分為電壓增益(voltage gain)、電流增益(current gain)、功率增益(power gain),或是其他的單位。例如,一個互導放大器(transconductance amplifier)的增益單位是電導(輸出電流除以輸入電壓)。在多數情況,輸入和輸出為相同的單位,增益無需標示出單位(除了在強調是電壓放大或電流放大的情形下),實際上經常以db(decibels)標示。
四個基本類型的放大器,如下所示:
● ● 電壓放大器 - 這是放大器的最常見的類型。輸入電壓被放大到較大的輸出電壓。放大器的輸入阻抗高,輸出阻抗低。
● ● 電流放大器 - 該放大器能將輸入電流變為一個較大的輸出電流。放大器的輸入阻抗低,輸出阻抗高。
● ● 互導放大器 - 該放大器在變化的輸入電壓下的響應為提供一個相關的變化的輸出電流。
● ● 互阻放大器 - 該放大器在變化的輸入電流下的響應為提供一個相關的變化的輸出電壓。該設備的其他名稱是跨阻放大器和電流電壓轉換器。
在實踐中,一個放大器的功率增益將取決於所用的源阻抗和負載阻抗以及內在的電壓/電流增益; 而一個射頻(RF)放大器可以具有其最大功率傳輸的阻抗,音頻和儀錶放大器通常優化輸入和輸出阻抗,以使用最小的負載並獲得最高的信號完整性。一個聲稱增益為20 dB的放大器可能具有10倍的電壓增益和遠超過20 dB(100功率比)的可用功率增益,但實際上可以提供一個低得多的功率增益,比如輸入是一個600 Ω的麥克風,輸出接在一個47 kΩ的功率放大器的輸入端上。
放大器電路在不同時期在電子領域中有扮演著不同的角色:
(1)放大器電路被首次用於中繼傳播設施。例如在舊式電話線路中:用弱電流控制外呼線路的電源電壓。
(2)用於音頻廣播。范信達(Reginald Fessenden)在1906年12月24日,首次把碳粒式麥克風(Carbon microphone)作為放大器,應用於調頻廣播傳送裝置中,把聲音調製成射頻源。
(3)在20世紀60年代,真空管開始淘汰。當時,一些大功率放大器或專業級的音頻應用(例如吉他放大器和高保真放大器)仍然會採用晶體管放大器電路。許多廣播發射站仍然使用真空管。
(4)20世紀70年代開始,越來越多的晶體管被連接到一塊晶元上來製作集成電路。如今大量商業上通行的放大器都是基於集成電路的。
● 放大器
● 負反饋放大器
● 音頻放大器
● 真空管音頻放大器
● 低雜訊放大器
● 運算放大器
目錄