精算分佈理論研究

精算分佈理論研究

《精算分佈理論研究》是知識產權出版社出版的一本圖書作者是高洪忠

作者簡介


高洪忠,男,1970年生,山東濰坊人。2003年畢業於山東大學數學與系統科學學院,獲理學博士學位;2003年-2005年在中國人民財產保險股份有限公司從事博士后研究工作。現任中央財經大學中國精算研究院研究人員。先後在《中國管理科學》、《保險研究》、《數理統計與管理》、《統計與決策》等雜誌發表文章三十餘篇,編著《再保險精算實務》、《非壽險精算學》教材兩部。

內容簡介


《精算分佈理論研究》重點研究了賠付次數分佈,用於分析保險業務的損失規律。《精算分佈理論研究》共包括四部分內容,分別為:基礎精算分佈理論、一維GPSJ分佈類、二維GPSJ分佈類、賠付額分佈右尾的建模問題。

目錄


第一部分基礎精算分佈理論
第1章 基礎知識介紹
1.1 相關數學公式及符號說明
1.1.1 項係數
1.1.2 伽馬函數貝塔函數及Digamma函數
1.1.3 不完全伽馬函數及不完全貝塔函數
1.2 概率相關知識介紹
1.2 1特徵函數
1.2.2 矩與矩母函數
1.2.3 概率母函數
1.2.4 概率理論中的各類收斂
1.3 其他
第2章 常見的賠付次數分佈
21泊松分佈
2.1.1 左截尾泊松分佈
2.1.2 右截尾泊松分佈
2.2 二項分佈
2.3 負二項分佈
2.4 Logarithmic分佈
2.5 (a,b,0)類
2.6 (a,b,1)類
2.7 混合次數模型
2.7 1混合泊松分佈
2.7 2混合二項分佈
2.8 複合次數分佈
2.9 泊松-二項分佈
2.10 Neyman-A分佈
2.11 Polya-Aeppli分佈
2.12 泊松-Pascal分佈
第3章 極大似然估計
3.1 極大似然估計的定義
3.2 極大似然估計的性質
3.3 極大似然估計的有效性
3.4 特殊情形下的MLE
3.5 極大似然估計的數值解法
3.5.1 Newton-Raptlson演演算法
3.5.2 Fisher得分法
3.5.3 計數分佈極大似然估計的數值解法
3.5.4 部分複合計數分佈的參數初值
第4章 用於模型擬合的假設檢驗方法
4.1似然比檢驗
4.2 Pearsonx2檢驗
4.3其他檢驗方法
4.3 1K0lmogorov-Smimov檢驗
4.3.2 罰似然值法
4.3.3 Wald檢驗法
4.3.4 得分檢驗法
第二部分一維GPSJ賠付次數模型
第5章 泊松-Tweedie分佈類
5.1 簡介
5.2 預備知識
5.3 泊松-Tweedie模型
5.4 從Bayesian方法角度進行分析
5.5 數值例子
5.6 結論
第6章 GPsJ1分佈類
6.1 簡介
6.2 預備知識
6.2.1 參數混合泊松分佈
6.2.2 幾何變換
6.2.3 ESJ函數類
6.2.4 EDP變換及IEDP變換
6.2.5 偽複合泊松分佈
6.3 GPsJ1賠付次數分佈類
6.4 GPsJ1分佈類的性質
6.5 GPsJ1分佈類下總賠付額的計算公式
6.6 GPSJ1的極大似然估計
6.7 實例
第7章 GPsJ1分佈類的無賠款優待系統
7.1 簡介
7.2 背景知識
7.2.1 保費定價原理
7.2.2 無賠款優待系統的數學模型
7.2.3 GPSJ1分佈類
7.2.4 參數混合泊松模型
7.2.5 非參數混合泊松模型
7.3 GPsJ1下的無賠款優待系統
7.3.1 GPSJ1過程
7.3.2 最優無賠款優待系統
7.3.3 零效用原理下的無賠款優待系統
7.4 實例
7.5 結論
第8章 GPSJ1分佈類的穩定性
8.1 引言
8.2 無窮階非同質遞歸方程
……
第9章 GPSJ1分佈類的合成假設檢驗
第10章 一類無窮可分佈的合成假設檢驗
第11章 變異係數的區間估計
第三部分 多維GPSJ賠付次數模型
第12章 GPSJ2分佈類
第13章 GPSJ2分佈類的合成體驗
第四部分 對損失分佈尾部特徵的研究
第14章 損失分佈的尾部特徵
第15章 用POT方法估計損失分佈尾部的效應分析
附錄
參考文獻