接合公理

接合公理

Hilbert的《幾何基礎》的五組公理之一。

接合公理


I1 通過任意給定的兩點有一直缐。
I2 通過任意給定的兩點至多有一直缐。
I3 每一直缐上至少有兩點;至少有三點不同在直缐上。
I4 通過任意給定的不共缐三點有一平面;每一平面上至少有一點。
I5 至多有一平面通過任意給定的不共缐三點。
I6 若直缐a的兩點A,B在平面α上,則a上所有點都在α上,這時直缐a稱為在平面α上,或平面α通過或含有a。
I7 若兩平面有一公共點,則至少還有一公共點。
I8 至少有四點不同在一平面上。

相關條目


公式公里