熒光檢測器

熒光檢測器

熒光檢測器屬於溶質型檢測器,可直接用於定量分析。

熒光產生


電子躍遷的角度來講,熒光是指某些物質吸收了與它本身特徵頻率相同的光線以後,原子中的某些電子從基態中的最低振動能級躍遷到較高的某些振動能級。電子在同類分子或其他分子中撞擊,消耗了相當的能量,從而下降到第一電子激發態中的最低振動能級,能量的這種轉移形式稱為無輻射躍遷。由最低振動能級下降到基態中的某些不同能級,同時發出比原來吸收的頻率低、波長長的一種光,就是熒光。被化合物吸收的光稱為激發光,產生的熒光稱為發射光。熒光的波長總要長於分子吸收的紫外光波長,通常在可見光範圍內。熒光的性質與分子結構有密切關係,不同結構的分子被激發后,並不是都能發射熒光。

定量基礎


在光致發光中,發射出的輻射總依賴於所吸收的輻射量。由於一個受激發的分子回到基態時可能以無輻射躍遷的形式產生能量損失,因而發射輻射的光子數通常都少於吸收輻射的光子數,它以量子效率Q來表示。
熒光檢測器
熒光檢測器
在固定的實驗條件下,量子效率是個常數,通常Q小於1。對可用熒光檢測的物質來說,Q值一般在0.1~0.9之間。熒光強度F與吸收光強度成正比。
對於稀溶液,熒光強度與熒光物質溶液濃度、摩爾吸光係數、吸收池厚度、入射光強度、熒光的量子效率及熒光的收集效率等成正相關。在其他因素保持不變的條件下,物質的熒光強度與該物質溶液濃度成正比,這是熒光檢測器的定量基礎。熒光檢測器屬於溶質型檢測器,可直接用於定量分析。

類型


熒光涉及光的吸收和發射兩個過程,因此任何熒光化合物,都有兩種特徵的光譜:激發光譜(excitation spectrum)和發射光譜(emission spectrum)。

激發光譜

熒光檢測器
熒光檢測器
熒光屬於光致發光,需選擇合適的激發光波長(Ex)以利於檢測。激發波長可通過熒光化合物的激發光譜來確定。激發光譜的具體檢測辦法是通過掃描激發單色器,使不同波長的入射光激發熒光化合物,產生的熒光通過固定波長的發射單色器,由光檢測元件檢測。最終得到熒光強度對激發波長的關係曲線就是激發光譜。在激發光譜曲線的最大波長處,處於激發態的分子數目最多,即所吸收的光能量也最多,能產生最強的熒光。當考慮靈敏度時,測定應選擇最大激發波長。

發射光譜

一般所說的熒光光譜,實際上僅指熒光發射光譜。它是在激發單色器波長固定時,發射單色器進行波長掃描所得的熒光強度隨熒光波長(即發射波長,Em)變化的曲線。熒光光譜可供鑒別熒光物質,並作為熒光測定時選擇合適的測定波長的依據。
另外,由於熒光測量儀器的特性,使光源的能量分佈、單色器的透射率和檢測器的響應等性能會隨波長而變,所以同一化合物在不同的儀器上會得到不同的光譜圖,且彼此間無類比性,這種光譜稱為表觀光譜。要使同一化合物在不同的儀器上能得到具有相同特性的熒光光譜,則需要對儀器的上述特性進行校正。經過校正的光譜稱為真正的熒光光譜。
激發波長和發射波長是熒光檢測的必要參數。選擇合適的激發波長和發射波長,對檢測的靈敏度和選擇性都很重要,尤其是可以較大程度地提高檢測靈敏度。