通信理論

通信理論

通信理論的形成始自1928年R.V.L.哈特利和H.奈奎斯特分別提出的信息概念和信息率與頻帶的關係。

理論簡介


實現C.E.仙農的理想通信系統的各種理論問題。仙農的資訊理論在規定了信源和通道概率特性的基礎上,解決了理想編、解碼器的存在性問題。但是,具體分析實際信源和通道以及具體實現編、解碼器,還涉及到許多技術性的理論問題,這就是通信理論的主要研究對象。
通信理論,1942年N.維納和1956年В.А.卡切尼可夫各自引用統計觀點來說明雜訊和信號特性,1948年仙農系統地提出了信息理論。這些理論被認為是近代通信理論的基礎。數字技術,尤其是計算機技術的發展,對通信起著越來越大的影響,一方面它們使通信理論的許多原理得以實現,另一方面又提出許多待探討的理論問題。
通信理論的範圍相當廣,它涉及仙農的資訊理論、信源和通道分析中的概率論和隨機過程理論,以及形成通道的電磁波理論,如電波傳播理論、電磁兼容和干擾理論等。編碼器和解碼器理論是通信理論的重要部分。編碼器是指從信源符號到適合通道傳輸的符號之間的全部變換設備,分為信源編碼器和通道編碼器。解碼器是指從通道到信號(信息接受者)間的全部反變換設備。設計這些設備的主要目的是提高通信的有效性和可靠性,因而通信理論研究的主要問題在於降低信源的信息率,充分利用通道和提高通信質量。

低信源信息率


無失真地傳輸模擬信號所需要的信息率將趨於無限大。因此,通常是對模擬信號採樣,把各個樣值轉換成數字,即把連續量轉換成有限個量,這種轉換過程稱為量化。

充分利用通道


一種情況是帶通型通道傳輸基帶型(頻率分量從接近零值開始)信號問題。在實際通信中,常用調製器完成這種變換。調製方式很多(見調製),數字調製很重要。要使頻帶窄並且帶外能量儘可能小,則已調信號應是高階連續函數。但數字信號是不連續的,因而要求一個符號的已調信號要擴展到其他符號的時間中去,這又會引起碼間干擾。從資訊理論觀點看,這種擴展可使在後一符號期間尚能提取關於前一符號的信息,理論上是有利的。當然,解調應採用延時判決,但不免複雜一些。代表這個方面的理論之一是連續相位調製,並用部分響應擴展一個符號的相位函數,使相位儘可能平滑地變化以限制頻帶,再採用最大似然解碼(見卷積碼)作延時判決以降低誤碼率

提高通信質量


在通道輸出端,設法使信息傳輸質量最高(對模擬信號而言,輸出信噪比最高,對數字信號而言,誤碼率最低),這稱為最佳接收理論。其基礎是統計檢測理論,包括維納濾波、卡爾曼濾波、假設檢驗、估計理論等,這些理論應用較廣。在數字通信中,尚有糾錯編碼(見糾錯碼),也可降低誤碼率。自動反饋重傳系統的理論也比較重要。當發信端採用檢錯編碼時,收信端如發現傳輸有差錯(檢錯比糾錯容易實現),就利用反饋通道通知發信端重傳,直至認為無錯后才完成信息傳輸。這種方式可基本上做到無差錯傳輸。但由於需要編碼和重傳,信息有效傳輸率將降低。電報通信中的自動回答詢問 (ARQ)系統和計算機通信中的應答方式都屬於這一類。