反比例
兩種相關聯的變數
反比例,指的是兩種相關聯的變數,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的乘積一定,那麼他們就叫做成反比例的量,他們的關係叫做反比例關係。
兩種相關聯的量,一種量隨另一種量變化而變化,但這兩種量的積一定是個常數,這時,這兩種量是成反比例的量,它們的關係叫做反比例關係。通常用來x的變化規律來表示y的變化規律。
成反比例的量包括三個數量,一個定量和兩個變數。研究兩個變數之間的擴大(或縮小)的變化關係。一種量發生變化,引起另一種量發生相反的變化。這兩種量是反比例的量,它們的關係成反比例關係。
反比例關係是通過應用題的總數與份數關係幫助學生認識的。在總數與份數關係中,包含總數、份數和每份數。當總數一定時,每份數和份數是兩種相關聯的變數。如果每份數變化,份數也隨著變化。同樣如果份數變化,每份數也隨著變化。它們的變化,無論擴大還是縮小,相對應的兩個量的乘積(也就是總數)一定。具體說,當總數一定時,每份數(或份數)擴大或縮小若干倍,份數(或每份數)反而縮小或擴大相同的倍數。簡稱為“一擴一縮(或一縮一擴)”。具備這種變化關係的每份數和份數成反比例關係。反比例關係在典型應用題中屬於歸總問題。反映在除法中,當被除數一定,除數和商成反比例關係。在分數中,當分數的分子一定,分母與分數值成反比例關係。在比例中,比的前項一定,比的後項與比值成反比例關係。如果再把總數與份數關係具體化為:在購物問題中,總價一定,單價和數量成反比例關係。在行程問題中,路程一定,速度和時間成反比例關係。在做工問題中,工作總量一定,工作效率和工作時間成反比例關係。如果兩種量成反比例,那麼一種量的任意兩個數的比,等於另一種量的兩個對應數的反比。如,加工零件的總數一定,是600個。如果每小時加工10個,60個小時完成任務。如果每小時加工20個,30個小時完成任務。每小時加工數量的比,與它相對應的完成時間比是。是的反比。
兩種相關聯的量,一種量變化,另一種量也隨著變化,這兩種量中相對應的兩個數的積一定。這兩種量叫做成反比例的量。它們的關係叫做反比例關係。用(一定)x不等於0,k不等於0來表示。簡單點來說,就是如果一樣事物增加了,另一樣事物減少,他減少了,另一樣事物增加,這兩個事物的關係就叫做反比例。
相同點:①正比例和反比例都含有三個數量,在這三個數量中,均有一個定量、兩個變數。 ②在正、反比例的兩個變數中,均是一個量變化,另一個量也隨之變化。並且變化方式均屬於擴大(乘以一個數)或縮小(除以一個數)若干倍的變化。
不同點:正比例的定量是兩個變數中相對應的兩個數的比值。反比例的定量是兩個變數中相對應的兩個數的積。正、反比例之間的相互轉化:當正比例中的x值(自變數的值),轉化為它的倒數時,由正比例轉化為反比例;當反比例中的x值(自變數的值)也轉化為它的倒數時,由反比例轉化為正比例。兩種相關聯的量——→兩種相關聯的量,
一種量變化——→一種量變化
另一種量也隨著變化——→另一種量也隨著變化。
這兩種量中相對應的兩個數的比值一定——→這兩種量中相對應的兩個數的乘積一定
正比例和反比例相同之處與聯繫。
正比例:兩種相關聯的變數,一種量變化,另一種量也隨著變化,如果這兩種量的比值一定那麼這兩個數就成正比例,這兩個變數之間的關係就叫做成正比例。
(1)事物關係中都有兩個變數,一個常量。
(2)在兩個變數中,當一個變數發生變化時,則另一個變數也隨之發生變化。
(3)相對應的兩個變數的積或商都是一定的。
當正比例中的x值(自變數的值)轉化為它的倒數時,由正比例轉化為反比例;當反比例中的x值(自變數的值)也轉化為它的倒數時,由反比例轉化為正比例。
正比例例子:
1、單價一定,總價和數量成正比例。
2、數量一定,總價和單價成正比例。
3、長方形的長一定,面積和寬成正比例。
4、長方形的寬一定,面積和長成正比例。
5、速度一定,路程和時間成正比例。
6、時間一定,路程和速度成正比例。
7、工作效率一定,工作總量和工作時間成正比例。
8、工作時間一定,工作總量和工作效率成正比例。
9、除數一定,被除數和商成正比例。
10、商一定,被除數和除數成正比例。
11、磚的塊數一定,鋪底面積和每塊磚的面積成正比例。
12、磚的面積一定,鋪底面積和磚的塊數成正比例。
反比例例子:
1、百米賽跑,路程100米不變,速度和時間是反比例;
2、排隊做操,總人數不變,排隊的行數和每行的人數是反比例;
3、做紙盒子,總個數一定,每人做的個數和人數;
4、總價一定,它的單價和數量是反比例;
5、長方形的面積一定,長和寬是反比例;
6、長方體的體積一定,底面積和高是反比例;
7、等分一塊蛋糕,每人分到的蛋糕與人數成反比例;
8、總價一定,單價與數量成反比例;
9、總紙盒一定,每人做的個數與人數成反比例。
例:判斷是否成反比例。
(1)煤的總量一定,每天的燒煤量和能夠燒的天數。
(2)種子的總量一定,每公頃的播種量和播種的公頃數。
(3)李叔叔從家到工廠,騎自行車的速度和所需時間。
(4)華容做12道數學題,做完的題和沒有做完的題。
解:(1)是;(2)是;(3)是;(4)不是。