關鍵路徑
關鍵路徑
關鍵路徑是由杜邦公司發明的。,是指網路終端元素的元素的序列,該序列具有最長的總工期並決定了整個項目的最短完成時間。
鍵徑( )
項管,鍵徑指網路終端元素元素序列,該序列具決整項短完。
鍵徑決整項。鍵徑終端元素延遲影響項預完(例鍵徑浮)。
一個項目可以有多個,并行的關鍵路徑。另一個總工期比關鍵路徑的總工期略少的一條并行路徑被稱為次關鍵路徑。
最初,關鍵路徑方法只考慮終端元素之間的邏輯依賴關係。關鍵鏈方法中增加了資源約束。
關鍵路徑方法是由杜邦公司發明的。
用頂點表示事件,弧表示活動,弧上的權值表示活動持續的時間的有向圖叫AOE(Activity On Edge Network)網。AOE網常用於估算工程完成時間。例如:
圖1 是一個網。其中有9個事件v1,v2,…,v9;11項活動a1,a2,…,a11。每個事件表示在它之前的活動已經完成,在它之後的活動可以開始。如 v1表示整個工程開始,v9 表示整個工程結束。V5表示活動,a4和a5已經完成,活動a7和a8可以開始。與每個活動相聯繫的權表示完成該活動所需的時間。如活動a1需要6天時間可以完成。
● 只有在某頂點所代表的事件發生后,從該頂點出發的各有向邊所代表的活動才能開始。
● 只有在進入某一頂點的各有向邊所代表的活動都已經結束,該頂點所代表的事件才能發生。
● 表示實際工程計劃的AOE網應該是無環的,並且存在唯一的入度過為0的開始頂點和唯一的出度為0的完成頂點。
2)由事件vj的最早發生時間和最晚發生時間的定義,可以採取如下步驟求得關鍵活動:
A、從開始頂點 v 1 出發 , 令 ve(1)=0, 按拓樸有序序列求其餘各頂點的可能最早發生時間。
● Ve(k)=max{ve(j) dut()} ( 1.1 )
● j ∈ T
其中T是以頂點vk為尾的所有弧的頭頂點的集合(2 ≤ k ≤ n) 。
如果得到的拓樸有序序列中頂點的個數小於網中頂點個數n,則說明網中有環,不能求出關鍵路徑,演演算法結束。
B、從完成頂點 v n 出發,令vl(n)=ve(n),按逆拓樸有序求其餘各頂點的允許的最晚發生時間:
● vl(j)=min{vl(k)-dut()}
● k ∈ S
其中 S 是以頂點vj是頭的所有弧的尾頂點集合(1 ≤ j ≤ n-1) 。
C、求每一項活動ai(1 ≤ i ≤ m)的最早開始時間e(i)=ve(j);最晚開始時間:
● l(i)=vl(k)-dut()
若某條弧滿足 e(i)=l(i) ,則它是關鍵活動。
3)求出 AOE 網中所有關鍵活動后,只要刪去AOE網中所有的非關鍵活動,即可得到 AOE 網的關鍵路徑。
這時從開始頂點到達完成頂點的所有路徑都是關鍵路徑。一個AOE網的關鍵路徑可以不止一條,如圖7.21的AOE網中有二條關鍵路徑,(v1, v2, v5, v7 , v9 ) 和 (v1 , v2 , v5 , v8 , v9 )它們的路徑長度都是16 。如圖2所示:
注意:並不是加快任何一個關鍵活動都可以縮短整個工程完成的時間,只有加快那些包括在所有的關鍵路徑上的關鍵活動才能達到這個目的。只有在不改變AOE網的關鍵路徑的前提下,加快包含在關鍵路徑上的關鍵活動才可以縮短整個工程的完成時間。
本條目在以下條目中被提及 PERT網路分析法 關鍵路徑法 工作分解結構 時間一成本平衡法 網路圖 網路計劃技術 軟體項目管理 項目時間管理 項目管理信息系統 項目管理術語英漢對照表 項目計劃
關鍵字 關鍵路徑,Critical Path,Critical path,要害路線.