共找到108條詞條名為王穎的結果 展開

王穎

電子科技大學副教授

正文


王穎:女,電子科技大學副教授。
研究方向:偏微分方程

教育背景


09/2001--07/2004 四川師範大學,數學與軟體科學學院,碩士
09/1997--07/2001 四川師範大學,數學與軟體科學學院,學士

研究項目


1. 中央高校基本科研業務費項目,Boussinesq方程解的適定性、漸近性及孤立子的穩定性(No. ZYGX2015J096),2016/01-2018/12, 在研,主持。
2.國家自然科學基金天元基金項目, Boussinesq 方程的整體解和孤立子(No. 10926135),2010/01-2010/12,已結題,主持。
1. Fundamental Research Funds for the Central Universities,The well-posedness, asymptotic behavior of the solutions and the stability of solitary-wave for the Boussinesq equation (No. ZYGX2015J096), 2016/01-2018/12.
2. National Natural Science Foundation of China, The global solutions and solitary-wave solutions for the Boussinesq equation(No. 10926135),2010/01-2010/12.
09/2004--07/2007 四川大學,數學學院,博士

獲獎情況


數學實驗
數學物理方程

論文及專著發表


1. Ying Wang, Existence and blow-up of Solutions for the sixth-order damped Boussinesq equation, Bulletin of the Iranian Mathematical Society.( Accepted)
2. Ying Wang,Cauchy problem for the sixth-order damped multidimensional Boussinesq Equation, Electronic Journal of Differential Equations, 64(2016), 1-16.
3. Ying Wang, Existence and nonexistence of solutions for a generalized Boussinesq equation, Boundary Value Problems, 1(2015), 1-15.
4. Chunlai Mu, Yuhuan Li and Ying Wang, Life span and a new critical exponent for a quasilinear degenerate parabolic equation with slow decay initial values,Nonlinear Analysis: Real Word Applications,11(2010),198-206.
5. Ying Wang, C. L. Mu and Y. H. Wu, Decay and Scattering of Solutions for a Generalized Boussinesq Equation. J. Differential Equations,247(2009),2380-2394.
6. Ying Wang, C. L. Mu and J. Deng, Strong Instability of Solitary-Wave Solutions for a Nonlinear Boussinesq Equation, Nonlinear Analysis: Theory, Methods & Applications, 69(2008), 1599-1614.
7. Ying Wangand C. L. Mu, Global Existence and Blow-up of the Solutions for the Multidimensional Generalized Boussinesq Equation, Math. Meth. Appl. Sci, 30 (2007), 1403-1417.
8. Ying Wangand C. L. Mu, Blow-up and Scattering of Solution for a Generalized Boussinesq Equation, Applied Mathematics and Computation, 188 (2007), 1131-1141.