傅立葉定律

傅立葉定律

傅立葉定律是法國著名科學家傅立葉在1822年提出的一條熱力學定律。徠該定律指在導熱過程中,單位時間內通過給定截面的導熱量,正比於垂直於該截面方向上的溫度變化率和截面面積,而熱量傳遞的方向則與溫度升高的方向相反。

定律簡介


熱傳導定律也稱為傅里葉定律,表明單位時間內通過給定截面的熱量,正比例於垂直於該截面方向上的溫度變化率和截面面積,而熱量傳遞的方向則與溫度升高的方向相反。 我們可以用兩種等效的形式來表述這個定律:整體形式以及差分形式。
牛頓的冷卻定律是傅立葉定律的離散推廣,而歐姆定律則是傅立葉定律的電學推廣。

作用意義


熱質的運動和傳遞中的應用
物質具有的熱能(粒子無規運動動能)是物質能量形式之一,它又對應著物質所具有的熱質量,並且可看作為是熱子氣的質量。物體導熱過程中的熱量輸運對應著熱質量(熱子氣質量)的輸運。與對流輸運不同,熱質的輸運是屬於分子輸運或擴散輸運。它可以用熱子氣的宏觀速度(漂移速度)來描述。
描述物體的機械運動,我們需要有物體的質量、運動速度和加速度等物理量以及牛頓運動定律。與此類似,為了能夠描述和研究熱子氣的宏觀運動,需要建立熱子氣運動的速度和加速度等物理量。為了能確定熱子氣運動狀態的變化與施加在熱子氣之上的非平衡作用力之間的關係,我們需要建立熱質運動定律。
傅立葉導熱定律是指在具有不均勻溫度場的物體中,各點熱流密度與其所在處的溫度梯度方向相反,數量上成正比,其比例係數為導熱係數:q=-kdT/dn
傅立葉導熱定律的物理意義通常被理解為:溫度梯度是驅動力,熱流密度則是被驅動的熱量流。在不可逆過程熱力學中把前者稱之為熱力學力,後者稱之為熱力學流同。在有關輸運現象的文獻中常把傅立葉導熱定律和牛頓粘性定律進行類比。牛頓粘性定律描述的是流體的本構關係,而傅立葉導熱定律描述的則是流和溫度梯度的關係。
我徠們基於傅立葉定律以及忽略慣性力的熱子氣守恆方程,求得了上述熱子氣粘性力的表達式。與此同時,從式可以看到傅立葉導熱定律是反映了熱子氣壓力與粘性力的平衡,是熱子氣動量方程在忽略慣性力條件下的一種近似。
研究發現:傅立葉導熱定律本質上是忽略慣性力條件下的熱子氣的壓力梯度與粘性力的平衡方程;當慣性力可以忽略時,熱子氣的動量守恆方程退化為傅立葉導熱定律。在極低溫或極高熱流密度時傅立葉導熱定律不再適用。

熱傳導


固體中的熱傳導是源於晶格振動形式的原子活動(聲子)。近代的觀點把這種能量傳輸歸因於原子運動導致的晶格波造成的。在非導體中,能量傳輸只依靠晶格波進行;在導體中(比如銀、鐵),除了晶格波還有自由電子的平抑運動。用來衡量不同物體導熱能力的物理量就是熱導率k(W/mK)。

數學表達式


【英譯】:Fourier's Law
【中文】:傅立葉定律
傅立葉定律是傳熱學中的一個基本定律,由法國著名科學家傅里葉於1822年提出。
傅里葉定律的文字表述:在導熱現象中,單位時間內通過給定截面的熱量,正比例於垂直於該截面方向上的溫度變化率和截面面積,而熱量傳遞的方向則與溫度升高的方向相反。
傅里葉定律用熱流密度表示時形式如下:
可以用來計算熱量的傳導量。其中熱流密度(W/m^2)是在與傳輸方向相垂直的單位面積上,在x方向上的傳熱速率。它與該方向上的溫度梯度dT/dx成正比。比例常數k是一個輸運特性,稱為熱導率(也稱為導熱係數),單位是(W/mK)。也可以表述如下:
其中Q為導熱量,單位為W.
傅立葉定律
傅立葉定律
A為傳熱面積,單位為
T為溫度,單位為K
x為在導熱面上的坐標,單位為m
一般形式的數學表達式:
式中:
是在n方向上的熱流密度,它垂直於等溫表面。熱流密度是一個向量,也可以將熱流密度向量分解為幾個分量。
上述式中負號表示傳熱方向與溫度梯度方向相反。

關鍵要點


傅立葉定律是熱傳導的基礎。它並不是由熱力學第一定律導出的數學表達式,而是基於實驗結果的歸納總結,是一個經驗公式。同時,傅立葉定律是定義材料的一個關鍵物性,熱導率的一個表達式。
另外,如上所述,傅立葉定律是一個向量表達式。熱流密度是垂直於等溫面的,並且是沿著溫度降低的方向。傅立葉定律適用於所有物質,不管它處於什麼狀態(固體、液體或者氣體)。