活塞式發動機

活塞式發動機

活塞發動機也叫往複式發動機,是一種利用一個或者多個活塞將壓力轉換成旋轉動能的發動機。活塞發動機是熱機的一種,靠汽油、柴油等燃料提供動力。活塞式發動機主要由氣缸、活塞、連桿、曲軸、氣門機構、螺旋槳減速器、機匣等組成。

簡介


最常用的往複式發動機是利用汽油或者柴油燃料產生壓力的。通常都不止一個活塞,每個活塞都在氣缸內,燃料-空氣混合物被注入其內,然後被點燃。熱氣膨脹,推動活塞向後運動。活塞的這種直線運動通過連桿和曲軸轉換成圓周運動。這種發動機經常被通稱為內燃機,儘管內燃機並不必須包括活塞。
現在的利用並不是很多,水蒸氣是另一種叫做蒸氣式發動機的往複式發動機的能源。這種情況下是利用非常高的蒸氣壓力來驅動活塞。蒸氣能的大部分利用中,活塞發動機已經被更為高效的渦輪機所取代,由於要求有更高的力矩活塞已經更多的運用到轎車領域中。
傳統四行程往複式活塞引擎,引擎轉兩周,各汽缸才完成一次進氣、壓縮、點火與排氣過程引擎。至於轉子引擎,轉子每轉一周便有三次進氣、壓縮、點火與排氣。轉子跟轉子引擎輸出軸的齒輪比例為三比一,故此轉子引擎只需轉一周,各轉子便有一次進氣、壓縮、點火與排氣過程,相當於往複式引擎運轉兩周,因此具有小排氣量就能成就高動力輸出的優點(但相對的,同樣排氣量之下轉子引擎也較往複引擎的油耗高出許多)。另外,由於轉子引擎的軸向運轉特性,它不需要精密的曲軸平衡就可以達到非常高的運轉轉速。
多氣缸的活塞式發動機採用不同的排列形狀,直接影響發動機的外形,圖2中是幾種氣缸的排列形式。第一種形式是直列式,氣缸排成一排,活塞直上直下往複運動。這種形式的發動機構造簡單,汽車上都用它。航空上用的比較多的是第二種V形和第五種星形。V形用於液體冷卻發動機,星形用於氣體冷卻發動機。除此之外還有X形、H形等其他排列形狀。
活塞式發動機
活塞式發動機

工作原理


活塞頂部在曲軸旋轉中心最遠的位置叫上死點、最近的位置叫下死點、從上死點到下死點的距離叫活塞衝程。活塞式航空發動機大多是四衝程發動機,即一個氣缸完成一個工作循環,活塞在氣缸內要經過四個衝程,依次是進氣衝程、壓縮衝程、膨脹衝程和排氣衝程。
進氣衝程
發動機開始工作時,首先進入“進氣衝程”,氣缸頭上的進氣門打開,排氣門關閉,活塞從上死點向下滑動到下死點為止,氣缸內的容積逐漸增大,氣壓降低——低於外面的大氣壓。於是新鮮的汽油和空氣的混合氣體,通過打開的進氣門被吸入氣缸內。混合氣體中汽油和空氣的比例,一般是1比15即燃燒一公斤的汽油需要15公斤的空氣。
壓縮衝程
進氣衝程完畢后,開始了第二衝程,即“壓縮衝程”。這時曲軸靠慣性作用繼續旋轉,把活塞由下死點向上推動。這時進氣門也同排氣門一樣嚴密關閉。氣缸內容積逐漸減少,混合氣體受到活塞的強烈壓縮。當活塞運動到上死點時,混合氣體被壓縮在上死點和氣缸頭之間的小空間內。這個小空間叫作“燃燒室”。這時混合氣體的壓強加到十個大氣壓。溫度也增加到攝氏400度左右。壓縮是為了更好地利用汽油燃燒時產生的熱量,使限制在燃燒室這個小小空間里的混合氣體的壓強大大提高,以便增加它燃燒后的做功能力。
當活塞處於下死點時,氣缸內的容積最大,在上死點時容積最小(後者也是燃燒室的容積)。混合氣體被壓縮的程度,可以用這兩個容積的比值來衡量。這個比值叫“壓縮比”。活塞航空發動機的壓縮比大約是5到8,壓縮比越大,氣體被壓縮得越厲害,發動機產生的功率也就越大。
工作衝程
壓縮衝程之後是“工作衝程”,也是第三個衝程。在壓縮衝程快結束,活塞接近上死點時,氣缸頭上的火花塞通過高壓電產生了電火花,將混合氣體點燃,燃燒時間很短,大約0.015秒;但是速度很快,大約達到每秒30米。氣體猛烈膨脹,壓強急劇增高,可達60到75個大氣壓,燃燒氣體的溫度到攝氏2000到2500度。燃燒時,局部溫度可能達到三、四千度,燃氣加到活塞上的衝擊力可達15噸。活塞在燃氣的強大壓力作用下,向下死點迅速運動,推動連桿葉門下跑,連桿便帶動曲軸轉起來了。
這個衝程是使發動機能夠工作而獲得動力的唯一衝程。其餘三個衝程都是為這個衝程作準備的。
排氣衝程
第四個衝程是“排氣衝程”。工作衝程結束后,由於慣性,曲軸繼續旋轉,使活塞由下死點向上運動。這時進氣門仍舊關閉,而排氣門大開,燃燒后的廢氣便通過排氣門向外排出。當活塞到達上死點時,絕大部分的廢氣已被排出。然後排氣門關閉,進氣門打開,活塞又由上死點下行,開始了新的一次循環。
從進氣衝程吸入新鮮混合氣體起,到排氣衝程排出廢氣止,汽油的熱能通過燃燒轉化為推動活塞運動的機械能,帶動螺旋槳旋轉而作功,這一總的過程叫做一個“循環”。這是一種周而復始的運動。由於其中包含著熱能到機械能的轉化,所以又叫做“熱循環”。
活塞航空發動機要完成四衝程工作,除了上述氣缸、活塞、聯桿、曲軸等構件外,還需要一些其他必要的裝置和構件。

發動機結構


簡述
活塞式發動機主要由氣缸、活塞、連桿、曲軸、氣門機構、螺旋槳減速器、機匣等組成。
氣缸是混合氣(汽油和空氣)進行燃燒的地方。氣缸內容納活塞作往複運動。氣缸頭上裝有點燃混合氣的電火花塞(俗稱電嘴),以及進、排氣門。發動機工作時氣缸溫度很高,所以氣缸外壁上有許多散熱片,用以擴大散熱面積。氣缸在發動機殼體(機匣)上的排列形式多為星形或V形。常見的星形發動機有5個、7個、9個、14個、18個或24個氣缸不等。在單缸容積相同的情況下,氣缸數目越多發動機功率越大。活塞承受燃氣壓力在氣缸內作往複運動,並通過連桿將這種運動轉變成曲軸的旋轉運動。連桿用來連接活塞和曲軸。曲軸是發動機輸出功率的部件。曲軸轉動時,通過減速器帶動螺旋槳轉動而產生拉力。除此而外,曲軸還要帶動一些附件(如各種油泵、發電機等)。氣門機構用來控制進氣門、排氣門定時打開和關閉。
機體是構成發動機的骨架,是發動機各機構和各系統的安裝基礎,其內、外安裝著發動機的所有主要零件和附件,承受各種載荷。因此,機體必須要有足夠的強度和剛度。機體組主要由氣缸體、汽缸套、氣缸蓋和氣缸墊等零件組成。
氣缸體
水冷發動機的氣缸體和上曲軸箱常鑄成一體,稱為氣缸體——曲軸箱,也可稱為氣缸體。氣缸體一般用灰鑄鐵鑄成,氣缸體上部的圓柱形空腔稱為氣缸,下半部為支承曲軸的曲軸箱,其內腔為曲軸運動的空間。在氣缸體內部鑄有許多加強筋,冷卻水套和潤滑油道等。
氣缸體應具有足夠的強度和剛度,根據氣缸體與油底殼安裝平面的位置不同,通常把氣缸體分為以下三種形式。
(1)一般式氣缸體其特點是油底殼安裝平面和曲軸旋轉中心在同一高度。這種氣缸體的優點是機體高度小,重量輕,結構緊湊,便於加工,曲軸拆裝方便;但其缺點是剛度和強度較差。
(2)龍門式氣缸體其特點是油底殼安裝平面低於曲軸的旋轉中心。它的優點是強度和剛度都好,能承受較大的機械負荷;但其缺點是工藝性較差,結構笨重,加工較困難。
(3)隧道式氣缸體這種形式的氣缸體曲軸的主軸承孔為整體式,採用滾動軸承,主軸承孔較大,曲軸從氣缸體後部裝入。其優點是結構緊湊、剛度和強度好,但其缺點是加工精度要求高,工藝性較差,曲軸拆裝不方便。
氣缸直接鏜在氣缸體上叫做整體式氣缸,整體式氣缸強度和剛度都好,能承受較大的載荷,這種氣缸對材料要求高,成本高。如果將氣缸製造成單獨的圓筒形零件(即氣缸套),然後再裝到氣缸體內。這樣,氣缸套採用耐磨的優質材料製成,氣缸體可用價格較低的一般材料製造,從而降低了製造成本。同時,氣缸套可以從氣缸體中取出,因而便於修理和更換,並可大大延長氣缸體的使用壽命。
氣缸套
氣缸套有乾式氣缸套和濕式氣缸套兩種。
乾式氣缸套的特點是氣缸套裝入氣缸體后,其外壁不直接與冷卻水接觸,而和氣缸體的壁面直接接觸,壁厚較薄,一般為1~3mm。它具有整體式氣缸體的優點,強度和剛度都較好,但加工比較複雜,內、外表面都需要進行精加工,拆裝不方便,散熱不良。
濕式氣缸套的特點是氣缸套裝入氣缸體后,其外壁直接與冷卻水接觸,氣缸套僅在上、下各有一圓環地帶和氣缸體接觸,壁厚一般為5~9mm。它散熱良好,冷卻均勻,加工容易,通常只需要精加工內表面,而與水接觸的外表面不需要加工,拆裝方便,但缺點是強度、剛度都不如乾式氣缸套好,而且容易產生漏水現象。應該採取一些防漏措施。

輔助系統


發動機除主要部件外,還須有若干輔助系統與之配合才能工作。主要有進氣系統、燃油系統、點火系統、冷卻系統、啟動系統、定時系統、散熱系統等。
(1)進氣系統:進氣系統內常裝有增壓器來增大進氣壓力,以此改善高空性能。
(2)燃油系統:燃料系統由燃料泵、氣化器或燃料噴射裝量等組成。燃料泵將汽油壓入氣化器,汽油在此霧化並與空氣混合進入氣缸。
(3)點火系統:點火系統由磁電機產生的高壓電在規定的時間產生電火花,將氣缸內的混合氣體點燃。
(4)冷卻系統:發動機內燃料燃燒時產生的熱量除轉化為動能和排出的廢氣所帶走的部分內能外,還有很大一部分傳給了氣缸壁和其他有關機件。冷卻系統的作用就是將這些熱量散發出去,以保證發功機的正常工作。
(5)啟動系統:將發動機發動起來.需要藉助外來動力.通常用電功機帶動曲軸轉動使發動機啟動。
(6)定時系統:定時系統是由曲軸帶動凸輪盤推動連桿和搖臂,定時將進氣活門和排氣活門開啟和關閉的系統。
(7)散熱系統:為了能夠使氣缸內表面在高溫下正常工作,必須對氣缸和氣缸蓋進行適當地冷卻。冷卻方法有兩種,一種是水冷,另一種是風冷。水冷發動機的氣缸周圍和氣缸蓋中都加工有冷卻水套,並且氣缸體和氣缸蓋冷卻水套相通,冷卻水在水套內不斷循環,帶走部分熱量,對氣缸和氣缸蓋起冷卻作用。
現代汽車上基本都採用水冷多缸發動機,對於多缸發動機,氣缸的排列形式決定了發動機外型尺寸和結構特點,對發動機機體的剛度和強度也有影響,並關係到汽車的總體布置。按照氣缸的排列方式不同,氣缸體還可以分成單列式,V型和對置式三種。
1)直列式
發動機的各個氣缸排成一列,一般是垂直布置的。單列式氣缸體結構簡單,加工容易,但發動機長度和高度較大。一般六缸以下發動機多採用單列式。例如捷達轎車、富康轎車、紅旗轎車所使用的發動機均採用這種直列式氣缸體。有的汽車為了降低發動機的高度,把發動機傾斜一個角度。
2)V型
氣缸排成兩列,左右兩列氣缸中心線的夾角γ<180°,稱為V型發動機,V型發動機與直列發動機相比,縮短了機體長度和高度,增加了氣缸體的剛度,減輕了發動機的重量,但加大了發動機的寬度,且形狀較複雜,加工困難,一般用於8缸以上的發動機,6缸發動機也有採用這種形式的氣缸體。
3)對置式
氣缸排成兩列,左右兩列氣缸在同一水平面上,即左右兩列氣缸中心線的夾角γ=180°,稱為對置式。它的特點是高度小,總體布置方便,有利於風冷。這種氣缸應用較少。

轉子內燃引擎


簡介
通常簡稱為轉子引擎,又稱為三角旋轉活塞發動機,是四行程內燃機的一種,由德國工程師菲力·汪克爾(FelixWankel)在1959年時發明,因此又稱為汪克爾引擎。與傳統的往複式活塞引擎不同的是,轉子引擎的運轉元件(稱為轉子,Rotor,其斷面造型類似一個三角形)是與輸出軸同樣采軸向運轉,而不需利用槓桿與凸輪結構將輸出的力量轉向,因而減少了運轉時能量的耗損。
優點和缺點
轉子引擎的動力軸每旋轉一圈就作功一次,與一般的四衝程發動機每旋轉兩圈才作功一次相比,具有高馬力容積比(引擎容積較小就能輸出較多動力)的優點。另外,由於轉子引擎的軸向運轉特性,它不需要精密的曲軸平衡就能達到較高的運轉轉速。整個發動機只有兩個轉動部件,與一般的四衝程發動機具有進、排氣活門等二十多個活動部件相比結構大大簡化,故障的可能性也大大減小。除了以上的優點外,轉子引擎的優點亦包括體積較小、重量輕、低重心等。
相對地,由於轉子引擎的三個燃燒室並非完全隔離,因此在引擎使用一段時間之後容易因為油封材料磨損而造成漏氣問題,大幅增加油耗與污染。其獨特的機械結構也造成這類引擎較難維修。
雖然轉子引擎具有以小排氣量、利用高轉速而產生高輸出的特性,但由於運轉特性與往複式引擎的不同,世界各國在制訂與引擎排氣量相關的稅則時,皆是以轉子引擎的實際排氣量乘以二來作為與往複式引擎之間的比較基準。舉例來說,日本馬自達(Mazda)旗下搭載了轉子引擎的RX-8跑車,其實際排氣量雖然只有1308立方厘米,但在日本國內卻是以2616立方厘米的排氣量來作為稅級計算的基準。

其他資料


活塞式發動機只能為飛機提供軸功率,還要通過空氣螺旋槳將發動機的軸功率轉化為推進力,一起組成航空動力裝置。而螺旋槳在飛行速度高時推進效率急劇下降,因此活塞式發動機不能作為高速飛機、特別是超音速飛機的動力,故當今的飛機廣泛採用燃氣渦輪發動機