單晶體
單晶體
單晶體是指樣品中所含分子(原子或離子)在三維空間中呈規則、周期排列的一種固體狀態。化學藥物中的原料葯(一般由單一成分組成)在合適的溶劑系統中經重結晶可得到適合X射線衍射使用的單晶樣品,其大小約為0.5mm左右。例如:雪花、食鹽小顆粒等。單晶體是半導體科學技術上的重要材料。
固態物質分為晶體和非晶體。晶體分為單晶體,多晶體。
晶體(crystal):晶體有三個特徵:⑴晶體有一定的幾何外形;⑵晶體有固定的熔點;⑶晶體有各向異性的特點。
單晶體
單晶體是原子排列規律相同,晶格位相一致的晶體。例如:單晶硅。、
單晶體:整塊晶體由一顆晶粒組成,或是能用一個空間點陣圖形貫穿整個晶體。
多晶體是由很多具有相同排列方式但位向不一致的很多小晶粒組成的則稱為多晶體。例如:常用的金屬。
多晶體:整塊晶體由大量晶粒組成,或是不能用一個空間點陣圖形貫穿整個晶體。
單晶體具有晶體的三個特徵。
多晶體具有前兩項特徵,但具有各向同性的特點。
晶體是在物相轉變的情況下形成的。物相有三種,即氣相、液相和固相。只有晶體才是真正的固體。由氣相、液相轉變成固相時形成晶體,固相之間也可以直接產生轉變。
晶體生成的一般過程是先生成晶核,而後再逐漸長大。一般認為晶體從液相或氣相中的生長有三個階段:
①介質達到過飽和、過冷卻階段;
②成核階段;
②生長階段。
在某種介質體系中,過飽和、過冷卻狀態的出現,並不意味著整個體系的同時結晶。體系內各處首先出現瞬時的微細結晶粒子。這時由於溫度或濃度的局部變化,外部撞擊,或一些雜質粒子的影響,都會導致體系中出現局部過飽和度、過冷卻度較高的區域,使結晶粒子的大小達到臨界值以上。這種形成結晶微粒子的作用稱之為成核作用。
介質體系內的質點同時進入不穩定狀態形成新相,稱為均勻成核作用。
在體系內的某些局部小區首先形成新相的核,稱為不均勻成核作用。
均勻成核是指在一個體系內,各處的成核幾率相等,這要克服相當大的表面能位壘,即需要相當大的過冷卻度才能成核。
非均勻成核過程是由於體系中已經存在某種不均勻性,例如懸浮的雜質微粒,容器壁上凹凸不平等,它們都有效地降低了表面能成核時的位壘,優先在這些具有不均勻性的地點形成晶核。因之在過冷卻度很小時亦能局部地成核。
在單位時間內,單位體積中所形成的核的數目稱成核速度。它決定於物質的過飽和度或過冷卻度。過飽和度和過冷卻度越高,成核速度越大。成核速度還與介質的粘度有關,粘度大會阻礙物質的擴散,降低成核速度. 晶核形成后,將進一步成長。下面介紹關於晶體生長的兩種主要的理論。
科塞爾(Kossel,1927)首先提出,后經斯特蘭斯基(Stranski)加以發展的晶體的層生長理論亦稱為科塞爾—斯特蘭斯基理論。
它是論述在晶核的光滑表面上生長一層原子面時,質點在界面上進入晶格"座位"的最佳位置是具有三面凹入角的位置。質點在此位置上與晶核結合成鍵放出的能量最大。因為每一個來自環境相的新質點在環境相與新相界面的晶格上就位時,最可能結合的位置是能量上最有利的位置,即結合成鍵時應該是成鍵數目最多,釋放出能量最大的位置。由此可以得出如下的結論即晶體在理想情況下生長時,先長一條行列,然後長相鄰的行列。在長滿一層面網后,再開始長第二層面網。晶面(最外的面網)是平行向外推移而生長的。這就是晶體的層生長理論,用它可以解釋如下的一些生長現象。
1)晶體常生長成為面平、棱直的多面體形態。
2)在晶體生長的過程中,環境可能有所變化,不同時刻生成的晶體在物性(如顏色)和成分等方面可能有細微的變化,因而在晶體的斷面上常常可以看到帶狀構造。它表明晶面是平行向外推移生長的。
3)由於晶面是向外平行推移生長的,所以同種礦物不同晶體上對應晶面間的夾角不變。
4)晶體由小長大,許多晶面向外平行移動的軌跡形成以晶體中心為頂點的錐狀體稱為生長錐或砂鍾狀構造。在薄片中常常能看到。
然而晶體生長的實際情況要比簡單層生長理論複雜得多。往往一次沉澱在一個晶面上的物質層的厚度可達幾萬或幾十萬個分子層。同時亦不一定是一層一層地順序堆積,而是一層尚未長完,又有一個新層開始生長。這樣繼續生長下去的結果,使晶體表面不平坦,成為階梯狀稱為晶面階梯。科塞爾理論雖然有其正確的方面,但實際晶體生長過程並非完全按照二維層生長的機制進行的。因為當晶體的一層面網生長完成之後,再在其上開始生長第二層面網時有很大的困難,其原因是已長好的面網對溶液中質點的引力較小,不易克服質點的熱振動使質點就位。因此,在過飽和度或過冷卻度較低的情況下,晶的生長就需要用其它的生長機制加以解釋。
早在1855年,法國結晶學家布拉維(A.Bravis)從晶體具有空間格子構造的幾何概念出發,論述了實際晶面與空間格子構造中面網之間的關係,即實際晶體的晶面常常平行網面結點密度最大的面網,這就是布拉維法則。
布拉維的這一結論系根據晶體上不同晶面的相對生長速度與網面上結點的密度成反比的推論引導而出的。所謂晶面生長速度是指單位時間內晶面在其垂直方向上增長的厚度。晶面AB的網面上結點的密度最大,網面間距也最大,網面對外來質點的引力小,生長速度慢,晶面橫向擴展,最終保留在晶體上;CD晶面次之;BC晶面的網面上結點密度最小,網面間距也就小,網面對外來質點引力大,生長速度最快,橫向逐漸縮小以致晶面最終消失;因此,實際晶體上的晶面常是網面上結點密度較大的面。
總體看來,布拉維法則闡明了晶面發育的基本規律。但由於當時晶體中質點的具體排列尚屬未知,布拉維所依據的僅是由抽象的結點所組成的空間格子,而非真實的晶體結構。因此,在某些情況下可能會與實際情況產生一些偏離。1937年美國結晶學家唐內—哈克 (Donnay-Harker)進一步考慮了晶體構造中周期性平移(體現為空間格子)以外的其他對稱要素(如螺旋軸、滑移面)對某些方向面網上結點密度的影響,從而擴大了布拉維法則的適用範圍。布拉維法則的另一不足之處是,只考慮了晶體的本身,而忽略了生長晶體的介質條件。
⑴從熔體中結晶
當溫度低於熔點時,晶體開始析出,也就是說,只有當熔體過冷卻時晶體才能發生。如水在溫度低於零攝氏度時結晶成冰;金屬熔體冷卻到熔點以下結晶成金屬晶體。
⑵從溶液中結晶
當溶液達到過飽和時,才能析出晶體。其方式有:
1)溫度降低,如岩漿期后的熱液越遠離岩漿源則溫度將漸次降低,各種礦物晶體陸續析出;
2)水分蒸發,如天然鹽湖滷水蒸發;
3)通過化學反應,生成難溶物質。
決定晶體生長的形態,內因是基本的,而生成時所處的外界環境對晶體形態的影響也很大。同一種晶體在不同的條件生長時,晶體形態是可能有所差別的。
影響晶體生長的外部因素還有很多,如晶體析出的先後次序也影響晶體形態,先析出者有較多自由空間,晶形完整,成自形晶;較後生長的則形成半自形晶或他形晶。同一種礦物的天然晶體於不同的地質條件下形成時,在形態上、物理性質上部可能顯示不同的特徵,這些特徵標誌著晶體的生長環境,稱為標型特徵。
把晶體置於不飽和溶液中晶體就開始鎔解。由於角頂和棱與溶劑接觸的機會多,所以這些地方溶解得快些,因而晶體可溶成近似球狀。如明礬的八面體溶解后成近於球形的八面體。
晶面溶解時,將首先在一些薄弱地方溶解出小凹坑,稱為蝕像。經在鏡下觀察,這些蝕象是由各種次生小晶面組成。不同網面密度的晶面溶解時,網面密度大的晶面先溶解,因為網面密度大的晶麵糰面間距大,容易破壞。
破壞了的和溶解了的晶體處於合適的環境又可恢復多面體形態,稱為晶體的再生,如班岩中石英顆粒的再生。
溶解和再生不是簡單的相反的現象。晶體溶解時,溶解速度是隨方向逐漸變化的,因而晶體溶解可形成近於球形;晶體再生時,生長速度隨方向的改變而突變,因之晶體又可以恢復成幾何多面體形態。
晶體在自然界的生長往往不是直線型進行的,溶解和再生在自然界常交替出現,使晶體表面呈複雜的形態。如在晶體上生成一些窄小的晶面,或者在晶面上生成一些特殊的突起和花紋。
對天然礦物晶體生長的研究有助於了解礦物、岩石、地質體的形成及發展歷史,並為礦物資源的開發和利用提供一些有益的啟發性資料。人工合成品體則不僅可以模擬和解釋天然礦物的形成條件,更重要的是能夠提供現代科學校術所急需的晶體材料。
人工合成晶體實驗技術迅速發展,成功地合成了大量重要的晶體材料,如激光材料、半導體材料、磁性材料、人造寶石以及其它多種現代科技所要求的具有特種功能的晶體材料。當前人工合成晶體已成為工業主要文柱的材料科學的一個重要組成部分。
人工合成晶體的主要途徑是從溶液中培養和在高溫高壓下通過同質多像的轉變來製備(如用石墨製備金剛石)等。具體方法很多,下面簡要介紹幾種最常用的方法。
晶體的培養是在高壓釜內進行的。高壓釜由耐高溫高壓和耐酸鹼的特種鋼材製成。上部為結晶區,懸掛有籽晶;下部為溶解區,放置培養晶體的原料,釜內填裝溶劑介質。由於結晶區與溶解區之間有溫度差(如培養水晶,結晶區為330-350℃,溶解區為360-380℃)而產生對流,將高溫的飽和溶液帶至低溫的結晶區形成過飽和析出溶質使籽晶生長。溫度降低並已析出了部分溶質的溶液又流向下部,溶解培養料,如此循環往複,使籽晶得以連續不斷地長大。
提拉法
這是一種直接從熔體中拉出單晶的方法。熔體置柑塌中,籽晶固定於可以旋轉和升降的提拉杆上。降低提拉杆,將籽晶插入熔體,調節溫度使籽晶生長。提升提拉杆,使晶體一面生長,一面被慢慢地拉出來。這是從熔體中生長晶體常用的方法。用此法可以拉出多種晶體,如單晶硅、白鎢礦、釔鋁榴石和均勻透明的紅寶石等。
焰熔法
這是一種用氫氧火焰熔化粉料並使之結晶的方法。小錘敲打裝有粉料的料筒,粉料受振動經篩網而落下,氧經入口進入將粉料下送,氫和氧在噴口處混合燃燒,粉料經火焰的高溫而熔化並落於結晶桿上,控制桿端的溫度,使落於桿端的熔層逐漸結晶。為使晶體生長有一定長度,可使結晶桿逐漸下移。用這種方法成功地合成了如紅寶石、藍寶石、尖晶石、金紅石、鈦酸鍶、釔鋁榴石等多種晶體。