雷諾數

一種可用來表徵流體流動情況的無量綱數

雷諾數(Reynolds number)一種可用來表徵流體流動情況的無量綱數。Re=ρvd/μ,其中v、ρ、μ分別為流體的流速、密度與黏性係數,d為一特徵長度。例如流體流過圓形管道,則d為管道的當量直徑。利用雷諾數可區分流體的流動是層流或湍流,也可用來確定物體在流體中流動所受到的阻力。

簡介


雷諾數(Reynolds number)一種可用來表徵流體流動情況的無量綱數,以Re表示,Re=ρvr/η,其中v、ρ、η分別為流體的流速、密度與黏性係數,r為一特徵線度。例如流體流過圓形管道,則r為管道半徑。
利用雷諾數可區分流體的流動是層流或湍流,也可用來確定物體在流體中流動所受到的阻力。例如,對於小球在流體中的流動,當Re比“1”小得多時,其阻力f=6πrηv(稱為斯托克斯公式),當Re比“1”大得多時,f′=0.2πr2v2而與η無關。

計算


流體力學中表徵粘性影響的相似准數。為紀念O.雷諾而命名,記作Re。Re=ρvL/μ,ρ、μ為流體密度和粘度,v、L為流場的特徵速度和特徵長度。雷諾數表示作用於流體微團的慣性力與粘性力之比。兩個幾何相似流場的雷諾數相等,則對應微團的慣性力與粘性力之比相等。雷諾數越小意味著粘性力影響越顯著,越大則慣性力影響越顯著。雷諾數很小的流動(如潤滑膜內的流動),其粘性影響遍及全流場。雷諾數很大的流動(如一般飛行器繞流),其粘性影響僅在物面附近的邊界層或尾跡中才是重要的。在涉及粘性影響的流體力學實驗中,雷諾數是主要的相似准數。但很多模型實驗的雷諾數遠小於實物的雷諾數,因此研究修正方法和發展高雷諾數實驗設備是流體力學實驗研究的重要課題。

應用


雷諾數
雷諾數
測量管內流體流量時往往必須了解其流動狀態、流速分佈等。雷諾數就是表徵流體流動特性的一個重要參數。
流體流動時的慣性力Fg和粘性力(內摩擦力)Fm之比稱為雷諾數。用符號Re表示。Re是一個無因次量。
雷諾數小,意味著流體流動時各質點間的粘性力佔主要地位,流體各質點平行於管路內壁有規則地流動,呈層流流動狀態。雷諾數大,意味著慣性力佔主要地位,流體呈紊流流動狀態,一般管道雷諾數Re<2000為層流狀態,Re>4000為紊流狀態,Re=2000~4000為過渡狀態。在不同的流動狀態下,流體的運動規律.流速的分佈等都是不同的,因而管道內流體的平均流速υ與最大流速υmax的比值也是不同的。因此雷諾數的大小決定了粘性流體的流動特性。
外部條件幾何相似時(幾何相似的管子,流體流過幾何相似的物體等),若它們的雷諾數相等,則流體流動狀態也是幾何相似的(流體動力學相似)。這一相似規律正是流量測量節流裝置標準化的基礎。
在NS方程的無因次化過程當中可以得到。

歷史


在1883年英國力學家雷諾通過著名的雷諾試驗給出了雷諾數,用以判斷流體的流動形態。雷諾數表徵流體受慣性力與粘性力之比。

典型雷諾數


普通航空飛機:5 000 000
小型無人機:400 000
海鷗:100 000
滑翔蝴蝶:7000
圓形光滑管道:2500
橡膠管道:1600~2100
精子:0.0001
大腦中的血液流:100

基本釋義


雷諾數是流體力學中表徵粘性影響的相似準則數。為紀念雷諾而命名,記作Re。
雷諾數,又稱雷諾准數,是用以判別粘性流體流動狀態的一個無因次數群。
1883年英國人雷諾(O.Reynolds)觀察了流體在圓管內的流動,首先指出,流體的流動形態除了與流速(ω)有關外,還與管徑(d)、流體的粘度(μ)、流體的密度(ρ)這3個因素有關。
Re=ρvL/μ,ρ、μ為流體密度和動力粘性係數,v、L為流場的特徵速度和特徵長度。雷諾數物理上表示慣性力和粘性力量級的比。對外流問題,v、L一般取遠前方來流速度和物體主要尺寸(如機翼弦長或圓球直徑);內流問題則取通道內平均流速和通道直徑。兩個幾何相似流場的雷諾數相等,則對應微團的慣性力與粘性力之比相等。
雷諾數較小時,粘滯力對流場的影響大於慣性,流場中流速的擾動會因粘滯力而衰減,流體流動穩定,為層流;反之,若雷諾數較大時,慣性對流場的影響大於粘滯力,流體流動較不穩定,流速的微小變化容易發展、增強,形成紊亂、不規則的紊流流場。

相關研究


雷諾數越小意味著粘性力影響越顯著,越大意味著慣性影響越顯著。雷諾數很小的流動,例如霧珠的降落或潤滑膜內的流動過程,其特點是,粘性效應在整個流場中都是重要的。雷諾數很大的流動,例如飛機近地面飛行時相對於飛機的氣流,其特點是流體粘性對物體繞流的影響只在物體邊界層和物體後面的尾流內才是重要的。在慣性力和粘性力起重要作用的流動中,欲使二幾何相似的流動(幾何相似比n=Lp/Lm,下標p代表實物,m代表模型)滿足動力相似條件,必須保證模型和實物的雷諾數相等。例如,在同一種流體(即ρ相等)中進行模擬實驗,則動力相似條件為vm=nvp,即模型縮小n倍,速度就要增大n倍。
物體在不可壓縮粘性流體中作定常平面運動時,所有的無量綱數由兩個參數確定:攻角α和雷諾數Re。為了實現動力相似,除了要求模型和實物幾何相似外,還必須保證攻角和雷諾數相等。第一個條件總是容易實現的,而第二個條件一般很難完全滿足。特別是,當被繞流物體尺度比較大時,模型比實物小很多倍,就需要很大地改變流體繞流速度,密度和粘度。這在實際中是很困難的,因為在低速風洞中,風速的提高總是有一定限度的。所以相似律不能嚴格滿足,只能近似實現。當然,這樣做對空氣動力學特性會有影響,例如,最大阻力係數要降低,最小阻力係數會升高等。但是,只要實物的雷諾數Rep和模型的雷諾數Rem相差不太大,就可以利用某些經驗方法加以修正,使實驗結果在實踐中仍能得到應用。當然最好的辦法是建造巨大的、可在其中對真實飛機吹風的風洞,或建造壓縮空氣(密度較大)在其中作用的循環式閉口風洞,以便達到加大模型試驗雷諾數的目的。
根據分子運動理論,動力粘性係數μ∝ρvˉl,其中vˉ為分子平均速度,l為分子平均自由程。由於vˉ和聲速c是同一量級,可得到:Re=kMa/Kn,式中Ma為馬赫數;Kn為克努曾數;k為常數;它表明雷諾數、馬赫數、克努曾數之間有著內在的聯繫。當流動速度很小時,Ma很小,Kn也很小,由於粘性效應是主要的,這兩個無量綱參數以組合形式Ma/Kn出現,即以雷諾數出現。當流動速度很高時,從量綱理論可知,雷諾數和馬赫數都起著重要作用。如果空氣稀薄,則克努曾數起著主要作用。
粘性流體的求解不僅和邊界條件有關,而且也和雷諾數有關。若雷諾數很小,則粘性力是主要因素,壓力項主要和粘性力項平衡;若雷諾數很大,粘性力項成為次要因素,壓力項主要和慣性力項平衡。因此,在不同的雷諾數範圍內,流體流動不同,物體所受阻力也不同。當雷諾數低時,阻力正比於速度、粘度和特徵長度;而雷諾數高時,阻力大體上正比於速度平方、密度和特徵長度平方。
雷諾數也是判別流動特性的依據,例如在管流中,雷諾數小於2300的流動是層流,雷諾數等於2300~4000為過渡狀態,雷諾數大於4000時的是湍流。