張春蕊
張春蕊
張春蕊,女,博士、教授,東北林業大學理學院數學系主任。應用數學學科帶頭人。哈爾濱工業大學數學系基礎數學專業博士畢業。黑龍江省數學會常務理事,黑龍江省工業與應用數學會常務理事。
泛函微分方程理論及其在生物系統、控制科學中的應用。
主持科研項目3項。發表研究論文40餘篇,其中被SCI收錄14篇。
1、2006年獲黑龍江省科學技術二等獎(泛函微分方程的分支理論及應用,排名第三)。
2、2007 獲黑龍江省自然科學一等獎(Stability and bifurcation of a discrete red blood cell survival model,排名第一)
3、2008年獲黑龍江省教育廳科學技術二等獎(生命科學中的數學模型方法,排名第一)具有代表性的論著:
發表論文
1. A model in a coupled system of simple neural oscillators with delays Journal of Computational and Applied Mathematics, Volume 229, Issue 1, 1 July 2009, Pages 264-273 , SCI, EI收錄, 第一作者
2. Multiple Hopf bifurcations of symmetric BAM neural network model with delay Applied Mathematics Letters, Volume 22, Issue 4, April 2009, Pages 616-622 SCI, EI收錄, 第一作者
3. Bifurcation analysis of a class of neural networks with delays Nonlinear Analysis: Real World Applications, Volume 9, Issue 5, December 2008, Pages 2234-2252,SCI, EI收錄, 第二作者
4. Global existence of periodic solutions on a simplified BAM neural network model with delays Chaos,Solitons & Fractals, Volume 37, Issue 5, September 2008, Pages 1397-1408, SCI, EI收錄, 第三作者
5. Stability and bifurcation of a discrete BAM neural network model with delays Chaos, Solitons & Fractals, Volume 36, Issue 3, May 2008, Pages 612-616,SCI, EI收錄, 第三作者
6. Stability and bifurcation of a two-dimension discrete neural network model with multi-delays Chaos, Solitons & Fractals, Volume 31, Issue 5, March 2007, Pages 1232-1242,SCI, EI收錄, 第一作者
7. Stability and bifurcation of a discrete red blood cell survival model Chaos, Solitons & Fractals, Volume 28, Issue 2, April 2006, Pages 386-394 SCI, EI收錄, 第一作者
8. Stability analysis in a two-dimensional life energy system model with delay Ecological Modelling, Volume 193, Issues 3-4, 15 March 2006, Pages 691-702 SCI, EI收錄, 第一作者
9. Hopf bifurcation in numerical approximation of a n-dimension neural network model with multi-delays Chaos, Solitons & Fractals, Volume 25, Issue 1, July 2005, Pages 129-146 SCI, EI收錄, 第一作者
10. Bifurcation in a two-dimension neural network model with delay,Applied Mathematics and Mechanics,2005,26(2),210-217. SCI, EI收錄, 第二作者
11. Stability and bifurcation analysis in a kind of business cycle model with delay Chaos, Solitons & Fractals, Volume 22, Issue 4, November 2004, Pages 883-896, SCI, EI收錄, 第一作者
12. Stability analysis in a first-order complex differential equations with delay Nonlinear Analysis, Volume 59, Issue 5, November 2004, Pages 657-671, SCI, EI收錄, 第二作者
13. Some notes on adjoint matrices over commutative integral domain Applied Mathematics and Computation, Volume 156, Issue 3, 15 September 2004, Pages 805-816,SCI, EI收錄, 第二作者
14. Hopf bifurcation in numerical approximation of a class delay differential equations Applied Mathematics and Computation, Volume 146, Issues 2-3, 31 December 2003, Pages 335-349,SCI, EI收錄, 第一作者
15. Hopf bifurcation in numerical approximation of the sunflower equation, Journal of Applied Mathematics and Computing , 2006, 22(2), 113-124, EI收錄, 第一作者
16. Hopf bifurcation in numerical approximation for delay differential equations,Journal of Applied Mathematics & Computing,2004,16,No. 1–2,319-328. EI收錄, 第一作者
1.最優控制應用基礎,邢繼祥,張春蕊,徐洪澤編著,科學出版社,2003年
2. 線性代數與空間解析幾何學習指導,吳波英,張春蕊,陳延梅,蔣衛華 編寫,科學出版社,2004年