稜錐

稜錐又稱角錐,是三維多面體的一種

在幾何學上,稜錐又稱角錐,是三維多面體的一種,由多邊形各個頂點向它所在的平面外一點依次連直線段而構成。多邊形稱為稜錐的底面。隨著底面形狀不同,稜錐的稱呼也不相同,依底面多邊形而定,例如底面是正方形的稜錐稱為方錐,底面為三角形的稜錐稱為三稜錐,底面為五邊形的稜錐稱為五稜錐等等。

歷史


稜錐
稜錐
在公元前1650年左右的萊因德數學紙草書中,稜錐已經作為數學對象被幾何學家研究。紙草書的56至59題是有關正方錐的底邊、高以及底面和側面形成的二面角之間關係的計算,如已知高和底邊長度,求二面角等。傳說由歐幾里德在公元前三世紀寫成的《幾何原本》中,第十二章第七個命題證明了:三角柱的體積等於同底同高的三角錐的三倍,但《幾何原本》中沒有給出直接的稜錐體積公式。公元一世紀左右成書的《九章算術》第五章中的第十二題,計算了正方錐、直方錐(陽馬)、直三角錐(鱉臑)的體積,並給出了通用公式。公元三世紀中葉,數學家劉徽在給《九章算術》作的注中,運用極限思想證明了稜錐的體積公式。

概念


稜錐的底面:稜錐中的多邊形叫做稜錐的底面。
稜錐的側面:稜錐中除底面以外的各個面都叫做稜錐的側面。。
稜錐的側棱:相鄰側面的公共邊叫做稜錐的側棱。
稜錐的頂點;稜錐中各個側面的公共頂點叫做稜錐的頂點。
稜錐的高:稜錐的頂點到底面的距離叫做稜錐的高。
稜錐的對角面;稜錐中過不相鄰的兩條側棱的截面叫做對角面。

特徵


稜錐是多面體中重要的一種,它有兩個本質特徵:
①有一個面是多邊形;
②其餘的各面是有一個公共頂點的三角形,二者缺一不可。
因此稜錐有一個面是多邊形,其餘各面都是三角形。但是也要注意“有一個面是多邊形,其餘各面都是三角形”的幾何體未必是稜錐。

分類


稜錐的底面可以是三角形、四邊形、五邊形……我們把這樣的稜錐分別叫做三稜錐、四稜錐、五稜錐……

正稜錐


如果一個稜錐的底面是正多邊形,且頂點在底面的射影是底面的中心,這樣的稜錐叫做正稜錐。
正稜錐的各側棱都相等,各側面都是全等的等腰三角形。
正稜錐的斜高:正稜錐側面等腰三角形底邊上的高,叫做正稜錐的斜高。

性質


1.稜錐截面性質定理及推論
定理:如果稜錐被平行於底面的平面所截,那麼所得的截面與底面相似,截面面積與底面面積的比等於頂點到截面距離與稜錐高的平方比。
推論1:如果稜錐被平行於底面的平面所截,則稜錐的側棱和高被截面分成的線段比相等。
推論2:如果稜錐被平行於底面的平面所截,則截得的小稜錐與原稜錐的側面積之比也等於它們對應高的平方比,或它們的底面積之比。
2.一些特殊稜錐的性質
側棱長都相等的稜錐,它的頂點在底面內的射影是底面多邊形的外接圓的圓心(外心),同時側棱與底面所成的角都相等。
側面與底面的交角都相等的稜錐,它的二面角都是銳二面角,所以頂點在底面內的射影在底多邊形的內部,並且它到各邊的距離相等即為底多邊形的內切圓的圓心(內心),且各側面上的斜高相等。如果側面與底面所成角為α,則有S底=S側cosα。如圖畫出了射影是外心和內心的情況。
3.稜錐的側面積及全面積、體積公式、底面積公式
稜錐的側面積及全面積
稜錐的側面展開圖是由各個側面組成的,展開圖的面積,就是稜錐的側面積,則
S稜錐側=S1+S2+…+Sn(其中Si,i=1,2…n為第i個側面的面積)
S全=S稜錐側+S底
稜錐的底面積公式:S底=長×寬
稜錐和圓錐統稱錐體,錐體的體積公式是:v=1/3sh(s為錐體的底面積,h為錐體的高)。
斜稜錐的側面積=各側的面積之和
正稜錐的側面積:S正稜錐側=1/2chˊ(c為底面周長,hˊ為斜高)。
稜錐的中截面面積:S中截面=1/4S底面
4.正稜錐有下面一些性質
正稜錐各側棱相等,各側面都是全等的等腰三角形,各等腰三角形底邊上的高相等(它叫做正稜錐的斜高);
正稜錐的高、斜高和斜高在底面內的射影組成一個直角三角形,正稜錐的高、側棱、側棱在底面內的射影也組成一個直角三角形。
正稜錐的側棱與底面所成的角都相等;正稜錐的側面與底面所成的二面角都相等。
正稜錐的側面積:如果正稜錐的底面周長為c,斜高為h’,那麼它的側面積是s=1/2ch

直觀畫法


正稜錐的直觀圖由底面和頂點所決定。正稜錐底面的畫法與直稜柱底面的畫法相同。頂點和底面中心的距離等於它的高。下面以正五稜錐為例,說明正稜錐的直觀圖的畫法。
畫一個底面邊長為5cm,高為11.5cm的正五稜錐的直觀圖,比例尺是。
畫法:
(1)畫軸。畫x′軸、y′軸、z′軸,記坐標原點為O′,使∠x′O′y′=45°(或135°),∠x′O′z′=90°。如圖(1)
(2)畫底面。按x′軸、y′軸畫正五邊形的直觀圖ABCDE,按比例尺取邊長等於5÷5=1(cm),並使正五邊形的中心對應於點O′。
(3)畫高線。在z′軸取O′S=11.5÷5=2.3(cm)。
(4)成圖。連結SA、SB、SC、SD、SE,並加以整理(去掉輔助線,將被遮擋的部分改為虛線),就得到所畫的正五稜錐的直觀圖。

正稜台


定義

稜錐的底面和平行於底面的一個截面間的部分,叫做稜台。由三稜錐,四稜錐,五稜錐……截得的稜台,分別叫做三稜台,四稜台,五稜台……
由正稜錐截得的稜台叫做正稜台。

性質內容

正稜台的性質:
(1)正稜台的側棱相等,側面是全等的等腰梯形。各等腰梯形的高相等,它叫做正稜台的斜高;(2)正稜台的兩底面以及平行於底面的截面是相似正多邊形;
(3)正稜台的兩底面中心連線、相應的邊心距和斜高組成一個直角梯形;兩底面中心連線、側棱和兩底面相應的半徑也組成一個直角梯形。

相關名稱

兩個平行的面分別叫做上底面和下底面,其餘的面叫做側面,側面相交的線段叫做側棱,3條側棱相交的點叫做頂點。
正稜台各側面的高叫做稜台的斜高。

體積公式

稜台的體積公式:V=[S+S'+(SS')]h/3

截面


任意平面截稜錐所得截面均為多邊型形,不為圓面。