電荷轉移絡合物
電荷轉移絡合物
電荷轉移絡合物又稱電子給體-受體絡合物。指一類由富有電子和缺少電子兩種分子形成的絡合物。
電子受體可分為σ受體和π受體。前者主要是鹵代烷,後者是帶負電性基團的烯、醌衍生物和芳香衍生物。電子給體也可分為兩類:n給體和π給體。前者主要是含有N,O,S,P原子上未成鍵,n電子。后一類主要是芳香稠環化合物,可看成是π給體,又稱n給體。電子給體和受體在不照光下,兩分子間的化合物稱基態電子轉移絡合物(CTC)。一些弱的給體、受體在基態不產生電荷轉移反應,但在光照時能形成激發態電荷轉移絡合物。簡稱激基態絡合物。電荷轉移絡合物具有電子傳導性,可產生有機半導體、導體、超導體。電荷轉移絡合物往往具有顏色,其中許多不穩定,在溶液中與其組分以平衡狀態存在,有些可形成穩定固體。
例如,苦味酸(缺少電子的)和芳香烴(富有電子的)可形成具有一定熔點的絡合物。碘溶解在苯中,產生一個既非苯的多烯吸收又非碘的特徵吸收的新吸收帶,這個新吸收帶說明碘分子和苯分子間形成了一個絡合物。
這類絡合物的形成是因其中有一個分子的作用像一個電子給體D,而另一個分子的作用則像一個電子受體A。這種絡合物可以看作是下列兩個結構的共振雜化:
電荷轉移絡合物
電荷轉移絡合物
電荷轉移絡合物往往有顏色,有許多是不穩定的,它們只能在溶液中與它們的組分以平衡狀態存在。有一些電荷轉移絡合物可形成穩定的固體,有一定的熔點。例如,等摩爾的對苯醌和對苯二酚混合,可生成暗綠色的“醌氫醌”結晶,其熔點為171℃。許多電荷轉移絡合物中的電子給體和電子受體分子間之比是正整數,多數是1:1。具有非整數比的電荷轉移絡合物也有發現。
電荷轉移絡合物
在金屬離子和烯烴之間形成兩個鍵;一個是由烯烴充滿電子的π2p軌道與金屬離子的空s軌道(Ag+為5s軌道) 相互重疊生成的σ 型鍵;另一個是由金屬離子充滿電子的d軌道(Ag+為4d軌道)與烯烴的空反鍵π壘 軌道相互重疊而生成的π 型鍵。這種形式的鍵使得金屬離子不是與一個原子成鍵而是與整個π 鍵中心成鍵,結果是烯烴的電子密度有一部分移向金屬離子。
②電子受體是有機分子,例如苦味酸、1,3,5-三硝基苯、2,4,7-三硝基芴(結構式如)和類似的多硝基化合物。苦味酸能與許多芳烴、芳胺、脂肪胺、烯烴和另外一些化合物形成加成產物(見加成反應)。這些加成產物常是固體並有一定的熔點。這類化合物成鍵的原理尚不清楚,有一個理論認為它們有下列共振:
電荷轉移絡合物
電荷轉移絡合物
此外由晶體的X衍射測定發現,有許多這類加成產物,它們的分子相互平行地堆集在一起,含有給電子分子和受電子分子的交替層。例如三硝基苯-聯苯胺的結構式為:
電荷轉移絡合物
③電子受體是碘、溴或氯。鹵素分子從給電子體接受電子,並充實到它們的外電子d層,使它達到10個電子。胺、芳烴、酮等都能與鹵素分子生成絡合物。這就是碘溶解在丙酮、乙醇或苯等溶劑中而不產生碘的正常紫色的原因。IBr和ICl也可以形成絡合物,分子中I端是分子的電子受體。
①做太陽能電池的材料,苝的衍生物及其四氰基對醌二甲烷電荷轉移絡合物已用於太陽能電池。
②做電解質電容器的電解質添加劑,4-氰基-N-甲基吡啶碘鹽與四氰基對醌二甲烷的電荷轉移絡合物,可提高電解質電容器的電容量。鹵代苯醌與酞花青和二氨基萘與芘形成的電荷轉移絡合物,可改進絕緣性能。
③做表面活性劑。
④做半導體塑料、鋰蓄電池陽極區中的添加劑、紅外顯像管中的導電熱敏聚合物和熱塑鑄模時用的抗靜電劑。