共找到2條詞條名為正則化的結果 展開
- 正則化
- 正規化
正則化
正則化
正則化(regularization),是指在線性代數理論中,不適定問題通常是由一組線性代數方程定義的,而且這組方程組通常來源於有著很大的條件數的不適定反問題。大條件數意味著舍入誤差或其它誤差會嚴重地影響問題的結果。
反問題有兩種形式。最普遍的形式是已知系統和輸出求輸入,另一種系統未知的情況通常也被視為反問題。許多反問題很難被解決,但是其他反問題卻很容易得到答案。顯然,易於解決的問題不會比很難解決的問題更能引起人們的興趣,我們直接解決它們就可以了。那些很難被解決的問題則被稱為不適定的。一個不適定問題通常是病態的,並且不論是簡單地還是複雜地改變問題本身的形式都不會顯著地改善病態問題。另一方面,病態問題不一定是不適定的,因為通過改變問題的形式往往可以改善病態問題。在嚴格的數學意義上,我們通常不可能對不適定問題進行求解並得到準確解答。然而,通過使用我們的先驗知識,我們通常有希望能夠得到一個接近準確解答的答案。
求解不適定問題的普遍方法是:用一組與原不適定問題相“鄰近”的適定問題的解去逼近原問題的解,這種方法稱為正則化方法。如何建立有效的正則化方法是反問題領域中不適定問題研究的重要內容。通常的正則化方法有基於變分原理的Tikhonov 正則化、各種迭代方法以及其它的一些改進方法,這些方法都是求解不適定問題的有效方法,在各類反問題的研究中被廣泛採用,並得到深入研究。
正則化:Normalization,代數幾何中的一個概念。
就是給平面不可約代數曲線以某種形式的全純參數表示。
即對於PC^2中的不可約代數曲線C,尋找一個緊Riemann面C*和一個全純映射σ:C*→PC^2,使得σ(C*)=C
設C是不可約平面代數曲線,S是C的奇點的集合。如果存在緊Riemann面C*及全純映射σ:C*→PC^2,使得
(1) σ(C*)=C (2) σ^(-1)(S)是有限點集 (3) σ:C*\σ^(-1)(S)→C\S是一對一的映射
則稱(C*,σ)為C的正則化。不至於混淆的時候,也可以稱C*為C的正則化。
正則化的做法,實際上是在不可約平面代數曲線的奇點處,把具有不同切線的曲線分支分開,從而消除這種奇異性。
正則化就是對最小化經驗誤差函數上加約束,這樣的約束可以解釋為先驗知識(正則化參數等價於對參數引入先驗分佈)。約束有引導作用,在優化誤差函數的時候傾向於選擇滿足約束的梯度減少的方向,使最終的解傾向於符合先驗知識(如一般的l-norm先驗,表示原問題更可能是比較簡單的,這樣的優化傾向於產生參數值量級小的解,一般對應於稀疏參數的平滑解)。
同時,正則化解決了逆問題的不適定性,產生的解是存在,唯一同時也依賴於數據的,雜訊對不適定的影響就弱,解就不會過擬合,而且如果先驗(正則化)合適,則解就傾向於是符合真解(更不會過擬合了),即使訓練集中彼此間不相關的樣本數很少。