小波分析理論
小波分析理論
小波分析徠是目前數學中一個迅速發展的新領網域,它同時具有理論深刻和應用十分廣泛的雙重意義。小波變換的概念是由法國從事石油信號處理的工程師J.Morlet在1974年首先提出的,通過物理的直觀和信號處理的實際需要經驗的建立了反演公式,當時未能得到數學家的認可。
正如1807年法國的熱學工程師J.B.J.Fourier提出任一函數都能展開成三角函數的無窮級數的創新概念未能得到著名數學家J.L.Lagrange,P.S.Laplace以及A.M.Legendre的認可一樣。幸運的是,早在七十年代,A.Calderon表示定理的發現、Hardy空間的原子分解和無條件基的深入研究為小波變換的誕生做了理論上的準備,而且J.O.Stromberg還構造了歷史上非常類似於現在的小波基;1986年??名數學家Y.Meyer偶然構造出一個真正的小波基,並與S.Mallat合作建立了構造小波基的同意方法——多尺度分析之後,小波分析才開始蓬勃發展起來,其中比利時女數學家I.Daubechies撰寫的《小波十講(Ten Lectures on Wavelets)》對小波的普及起了重要的推動作用。它與Fourier變換、視窗Fourier變換(Gabor變換)相比,這是一個時間和頻率的局網域變換,因而能有效的從信號中提取資訊,通過伸縮和平移等運算功能對函數或信號進行多尺度細化分析(Multiscale Analysis),解決了Fourier變換不能解決的許多困難問題,從而小波變化被譽為“數學顯微鏡”,它是調和分析發展史上里程碑式的進展。
小波分析的應用是與小波分析的理論研究緊密地結合在一起地。現在,它已經在科技資訊產業領網域取得了令人矚目的成就。電子資訊技術是六大高新技術中重要的一個領網域,它的重要方面是影像和信號處理。現今,信號處理已經成為當代科學技術工作的重要部分,信號處理的目的就是:準確的分析、診斷、編碼壓縮和量化、快速傳遞或存儲、精確地重構(或恢復)。從數學地角度來看,信號與影像處理可以統一看作是信號處理(影像可以看作是二維信號),在小波分析地許多分析的許多應用中,都可以歸結為信號處理問題。現在,對於其性質隨實踐是穩定不變的信號,處理的理想工具仍然是傅立葉分析。但是在實際應用中的絕大多數信號是非穩定的,而特別適用於非穩定信號的工具就是小波分析。
事實上小波分析的應用領網域十分廣泛,它包括:數學領網域的許多學科;信號分析、影像處理;量子力學、理論物理;軍事電子對抗與武器的智能化;電腦分類與識別;音樂與語言的人工合成;醫學成像與診斷;地震勘探數據處理;大型機械的故障診斷等方面;例如,在數學方面,它已用於數值分析、構造快速數值方法、曲線曲面構造、微分方程求解、控制論等。在信號分析方面的濾波、去雜訊、壓縮、傳遞等。在影像處理方面的影像壓縮、分類、識別與診斷,去污等。在醫學成像方面的減少B超、CT、核磁共振成像的時間,提高解析度等。
(1)小波分析用於信號與影像壓縮是小波分析應用的一個重要方面。它的特點是壓縮比高,壓縮速度快,壓縮后能保持信號與影像的特徵不變,且在傳遞中可以抗干擾。基於小波分析的壓縮方法很多,比較成功的有小波包最好基方法,小波網域紋理模型方法,小波變換零樹壓縮,小波變換向量壓縮等。
(2)小波在信號分析中的應用也十分廣泛。它可以用於邊界的處理與濾波、時頻分析、信噪分離與提取弱信號、求分形指數、信號的識別與診斷以及多尺度邊緣偵測等。
(3)在工程技術等方面的應用。包括電腦視覺、電腦圖形學、曲線設計、湍流、遠端宇宙的研究與生物醫學方面。