共找到90條詞條名為楊濤的結果 展開

楊濤

中國科學院半導體研究所研究員

楊濤,研究員,博士生導師, 中科院“百人計劃”入選者。1997年畢業於日本德島大學,獲工學博士。博士畢業后,作為研究員或助理教授曾先後任職於日立公司中央研究所,新能源產業技術綜合開發機構(NEDO)和東京大學。2006年,作為中科院“引進海外傑出人才”回國到半導體研究所工作。

研究領域


楊濤博士長期從事半導體材料、器件與物理研究,尤其在氮化物半導體新材料、光子晶體和納米結構半導體量子點材料及器件應用等前沿領域中取得了多項創新性成果。

代表性研究工作


1)理論上建立了適於III族氮化物半導體電子能帶結構計算的緊束縛近似模型。該模型被國際同行稱作“標準的緊束縛近似模型”;
2)基於此模型給出了III族氮化物合金材料的能帶圖、禁帶、電子有效質量等表徵其物理特性的重要物理量。這些物理量對基於III族氮化物半導體材料的光電子器件的設計與模擬,材料物理特性的實驗研究等具有重要意義;
3)理論上證明了V族立方相氮化物合金(InAsN)具有大的帶隙彎曲參量,預言此材料可作為發展長波長信息功能器件的新材料;
4)提出了“高溫緩衝層”概念,用“三步生長法”取代“傳統的兩步生長法”在藍寶石襯底上用MOCVD製備出高質量GaN晶體。這對於發展GaN基的光電子器件具有重要的現實意義;
5)近年,主要致力於低維半導體量子點材料與器件應用的研究並取得了一系列成果:如,在國際上證明了最均勻的1.3微米輻射InAs/GaAs自組織量子點材料(非均勻展寬<17 meV);報道了快速退火能使長波長量子點產生大的波長藍移現象,闡明了產生這一現象的物理機理;在國內實現了無外部致冷、高速(10 Gb/s)、直接調製的1.3微米GaAs基量子點激光器,報道了基於InAs/GaAs量子點材料的中間能帶太陽能電池等。

科研項目


1)國家重大科學研究計劃項目“新型半導體納米線的可控生長和表徵” (2012-2016);
2)國家自然科學基金項目“基於MOCVD高性能1.55微米InAs/InP自組織量子點材料生長及激光器應用研究”(2012-2015);
3)國家自然科學基金項目“新型高效InAs/GaAs量子點中間能帶太陽能電池的研究”(2011-2013);
4)國家自然科學基金項目“新型P型摻雜1.3微米InAs/GaAs自組織量子點材料生長及激光器應用相關基礎研究”(2009-2011);
5)中科院百人計劃項目“低維半導體量子點材料和器件應用研究”(2007-2010);
6)國家863計劃項目“新型P型摻雜GaAs基1.3微米InAs量子點激光器研究”(2006.12 - 2008.12)。

代表性論著


1) P. F. Xu, H. M. Ji, T. Yang*, B. Xu, W. Q. Ma, and Z. G. Wang, “The Research Progress of Quantum Dot Lasers and Photodetectors in China”, Journal of Nanoscience and Nanotechnology, Vol.11(2011), pp. 9345-9356.
2) Y. X. Gu, T. Yang*, H. M. Ji, P. F. Xu, and Z. G. Wang, “Redshift and discrete energy level separation of self-assembled quantum dots induced by stain-reducing layer”, J. Appl. Phys. Vol. 109 (2011), pp. 064320-064324.
3) P. F. Xu, T. Yang*, H. M. Ji, Y. L. Cao, Y. X. Gu, and Z. G. Wang, “Temperature compensation for threshold current and slope efficiency of 1.3 mm InAs/GaAs quantum-dot lasers by facet coating design”, Chin. Phys. Lett. Vol. 28 (2011) pp. 044201-044203.
4) X. G. Yang, T. Yang*, K. F. Wang, Y. X. Gu, H. M. Ji, P. F. Xu, H. Q. Ni, Z. C. Niu, X. D. Wang, Y. L. Chen, and Z. G. Wang, “Intermediate-band solar cells based on InAs/GaAs quantum dots”, Chin. Phys. Lett. Vol. 28 (2011) pp. 038401-038403.
5) H. M. Ji, T. Yang*, Y. L. Cao, P. F. Xu, Y. X. Gu, and Z. G. Wang, “Self-Heating Effect on the Two-State Lasing Behaviors in 1.3 μm InAs–GaAs Quantum-Dot Lasers”, Jpn. J. Appl. Phys. Vol. 49 (2010) pp. 072103-072106.
6) Y. L. Cao, T. Yang*, P. F. Xu, H. M. Ji, Y. X. Gu, X. D. Wang, Q. Wang, W. Q. Ma, Q. Cao, and L. H. Chen, “Delay of the excited state lasing of 1310 nm InAs/GaAs quantum dot lasers by an optimal facet coating”, Appl. Phys. Lett. Vol.96 (2010) pp. 171101-171103.
7) H. M. Ji, T. Yang*, Y. L. Cao, P. F. Xu, Y. X. Gu, Y. Liu, L. Xie, and Z. G. Wang, “A 10 Gb/s directly-modulated 1.3 μm InAs/GaAs quantum-dot Laser”, Chin. Phys. Lett. Vol. 27 (2010) pp. 034209-034211.
8) H. M. Ji, T. Yang*, Y. L. Cao, P. F. Xu, Y. X. Gu, W. Q. Ma, and Z. G. Wang, “High characteristic temperature 1.3 μm InAs/GaAs quantum-dot lasers grown by molecular beam epitaxy”, Chin. Phys. Lett. Vol. 27 (2010) pp. 027801-027803.
9) P. F. Xu, T. Yang*, H. M. Ji, Y. L. Cao, Y. X. Gu, Y. Liu, W. Q. Ma, and Z. G. Wang, “Temperature-Dependent Modulation Characteristics for 1.3 mm InAs/GaAs Quantum Dot Lasers”, J. Appl. Phys. Vol.107 (2010) pp. 013102- 013106.
10) Y. L. Cao, T. Yang*, H. M. Ji, W. Q. Ma, Q. Cao, and L. H. Chen, “Temperature sensitivity dependence on cavity length in p-type doped and undoped 1.3 mm InAs/GaAs quantum dot lasers”, IEEE Photon. Technol. Lett. Vol. 20 (2008) pp. 1860-1862.
11) T. Yang, J. Tatebayashi, K. Aoki, M. Nishioka, and Y. Arakawa, “Effects of rapid thermal annealing on the emission properties of highly uniform self-assembled InAs/GaAs quantum dots emitting at 1.3 µm”, Appl. Phys. Lett. Vol.90 (2007) pp. 111912- 111914.
12) T. Yang, J. Tatebayashi, M. Nishioka, and Y. Arakawa, “Improved surface morphology of stacked 1.3 µm InAs/GaAs quantum dot active regions by introducing annealing processes”, Appl. Phys. Lett. Vol.89 (2006) pp. 081902-081904.
13) T. Yang, S. Tsukamoto, J. Tatebayashi, M. Nishioka, and Y. Arakawa, “Improvement of the uniformity of self-assembled InAs quantum dots grown on InGaAs/GaAs by low-pressure metalorganic chemical vapor deposition”, Appl. Phys. Lett. Vol.85 (2004) pp. 2753-2755.
14) T. Yang, J. Tatebayashi, S. Tsukamoto, M. Nishioka, and Y. Arakawa, “Narrow photoluminescence linewidth (< 17 meV) from highly uniform self-assembled InAs/GaAs quantum dots grown by low-pressure metalorganic chemical vapor deposition”, Appl. Phys. Lett. Vol.84 (2004) pp. 2817-2819.
15) T. Yang, Y. Sugimoto, S. Lan, N. Ikeda, Y. Tanaka, and K. Asakawa, “Transmission properties of coupled cavity waveguides based on two-dimensional photonic crystals with a triangular lattice of air holes”, J. Opt. Soc. Am. B Vol.20 (2003) pp. 1922-1926.
16) T. Yang, S. Kohmoto, H. Nakamura, and K. Asakawa, “Effects of lateral quantum dot pitch on the formation of vertically aligned InAs site-controlled quantum dots”, J. Appl. Phys. Vol.93 (2003) pp. 1190-1194.
17) T. Yang, T. Ishikawa, S. Kohmoto, Y. Nakamura, H. Nakamura, and K. Asakawa, “Height control of InAs/GaAs quantum dots by combining layer-by-layer in situ etching and molecular beam epitaxy”, J. Vac. Sci. Technol. B Vol. 20 (2002) pp. 668-672.
18) T. Yang, K. Uchida, T. Mishima, J. Kasai, and J. Gotoh, “Control of initial nucleation by reducing the V/III ratio during the early stage of GaN growth”, Phys. Status Solidi (a) Vol. 180 (2000) pp. 45-50.
19) T. Yang, S. Goto, M. Kawata, K. Uchida, A. Niwa, and J. Gotoh, “Optical properties of GaN thin films on sapphire substrates characterized by variable-angle spectroscopic ellipsometry”, Jpn. J. Appl. Phys., Part 2 Vol. 37 (1998) pp. L1105-L1108.
20) T. Yang, S. Nakajima, and S. Sakai, “Tight-binding calculation of electronic structures of InNAs ordered alloys”, Jpn. J. Appl. Phys., Part 2 Vol. 36 (1997) pp. L320-L322.
21) T. Yang, S. Nakajima, and S. Sakai, “Electronic structures of wurtzite GaN, InN and their alloy Ga1-xInxN calculated by the tight-binding method”, Jpn. J. Appl. Phys., Part 1 Vol. 34 (1995) pp. 5912-5921.