賽貝克效應
賽貝克效應
賽貝克效應(英語:Seebeck effect)將二種不同金屬各自的二端分別連接,並放在不同的溫度下,就會在這樣的線路內發生電流。這種現象稱為賽貝克效應。它是德國物理學家托馬斯·約翰·塞貝克於1821年發現的。
不同的金屬(或半導體)具有不同的塞貝克係數(所產生賽貝克效應大小不同),半導體與金屬的主因略有不同。半導體在不同的溫度下具有不同的載流子密度,當單一半導體兩端具有溫度差時,載子會擴散以消除密度的差異,因而造成電動勢。兩端的溫度相差越大,則產生的賽貝克電位差越大。而金屬的自由電子密度與費米能階幾乎不會隨溫度改變,因此金屬的賽貝克效應遠小於半導體。金屬的賽貝克效應由電子的平均自由程來決定。若平均自由程隨溫度上升,則熱端的自由電子有較高的機會向冷端移動,此時的塞貝克係數為負值。反過來說,若電子的平均自由程隨溫度上升而下降,則冷端的自由電子有較高的機會流向熱端,塞貝克係數為正值。
將兩種不同的金屬連接,並在兩接點給予溫度差,兩種金屬會分別產生各自的溫差電動勢。選用適當的二種不同金屬,利用賽貝克效應可以測量溫度;還可利用不同溫度進行特別的發電。若使用相同的金屬形成迴路,則會因為溫差造成的電動勢互相抵銷而無法觀察到賽貝克效應。
熱電效應(英語:Thermoelectric effect)是一個由溫差產生電壓的直接轉換,且反之亦然。簡單地放置一個熱電裝置,當他們的兩端有溫差時會產生一個電壓,而當一個電壓施加於其上,他也會產生一個溫差。這個效應可以用來產生電能、測量溫度,冷卻或加熱物體。因為這個加熱或製冷的方向決定於施加的電壓,熱電裝置讓溫度控制變得非常容易。
一般來說,熱電效應這個術語包含了三個分別經定義過的效應,賽貝克效應(Seebeck effect,由Thomas Johann Seebeck發現。)、帕爾帖效應(Peltier effect,由Jean-Charles Peltier發現。),與 湯姆森效應(Thomson effect,由威廉·湯姆孫發現)。在很多教科書上,熱電效應也被稱為 帕爾帖-塞貝克效應(Peltier–Seebeck effect)。它同時由法國物理學家讓·查爾斯·佩爾蒂(Jean Charles Athanase Peltier)與愛沙尼亞裔德國物理學家托馬斯·約翰·塞貝克(Thomas Johann Seebeck)分別獨立發現。還有一個術語叫焦耳加熱,也就是說當一個電壓通過一個阻抗物質上,即會產生熱,它是多少有關係的,儘管它不是一個普通的熱電效應術語(由於熱電裝置的非理想性,它通常被視為一個產生損耗的機制)。帕爾帖-塞貝克效應與湯姆孫效應是可逆的,但是焦耳加熱不可逆。
離域電子(英語:delocalized electron),也稱 遊離電子,是在分子、離子或固體金屬中不止與單一原子或單一共價鍵有關係的電子。遊離電子包含在分子軌道中,延伸到幾個相鄰的原子。一般來講,離域電子存在於共軛系統和介離子化合物中。人們漸漸地了解到,σ鍵中的電子也會遊離。例如甲烷中的成鍵電子是由五個原子共享的。更多細節詳見分子軌道理論。
在物理學中,載流子(charge carrier),或簡稱 載子(carrier),指可以自由移動的帶有電荷的物質微粒,如電子和離子。在半導體物理學中,電子流失導致共價鍵上留下的空位(空穴)被視為載流子。