禁忌搜索
禁忌搜索
禁忌搜索(Tabu Search或Taboo Search,簡稱TS)的思想最早由Glover(1986)提出,它是對局部領域搜索的一種擴展,是一種全局逐步尋優演演算法,是對人類智力過程的一種模擬。
TS演演算法通過引入一個靈活的存儲結構和相應的禁忌準則來避免迂迴搜索,並通過藐視準則來赦免一些被禁忌的優良狀態,進而保證多樣化的有效探索以最終實現全局優化。相對於模擬退火和遺傳演演算法,TS是又一種搜索特點不同的 meta-heuristic演演算法。迄今為止,TS演演算法在組合優化、生產調度、機器學習、電路設計和神經網路等領域取得了很大的成功,近年來又在函數全局優化方面得到較多的研究,並大有發展的趨勢。本章將主要介紹禁忌搜索的優化流程、原理、演演算法收斂理論與實現技術等內容。
局部領域搜索是基於貪婪思想持續地在當前解的領域中進行搜索,雖然演演算法通用易實現,且容易理解,但其搜索性能完全依賴於領域結構和初解,尤其窺陷入局部極小而無法保證全局優化性。針對局部領域搜索,為了實現全局優化,可嘗試的途徑有:以可控性概率接受劣解來逃逸局部極小,如模擬退火演演算法;擴大領域搜索結構,如TSP的2opt擴展到k-opt;多點并行搜索,如進化計算;變結構領域搜索( Mladenovic et al,1997);另外,就是採用TS的禁忌策略盡量避免迂迴搜索,它是一種確定性的局部極小突跳策略。
禁忌搜索是人工智慧的一種體現,是局部領域搜索的一種擴展。禁忌搜索最重要的思想是標記對應已搜索的局部最優解的一些對象,並在進一步的迭代搜索中盡量避開這些對象(而不是絕對禁止循環),從而保證對不同的有效搜索途徑的探索。禁忌搜索涉及到領域(neighborhood)、禁忌表(tabu list)、禁忌長度(tabu 1ength)、候選解(candidate)、藐視準則(candidate)等概念;
組合優化是TS演演算法應用最多的領域。置換問題,如TSP、調度問題等,是一大批組合優化問題的典型代表,在此用它來解釋簡單的禁忌搜索演演算法的思想和操作。對於 n元素的置換問題,其所有排列狀態數為n!,當n較大時搜索空間的大小將是天文數字,而禁忌搜索則希望僅通過探索少數解來得到滿意的優化解。
首先,我們對置換問題定義一種鄰域搜索結構,如互換操作(SWAP),即隨機交換兩個點的位置,則每個狀態的鄰域解有Cn2=n(n一1)/2個。稱從一個狀態轉移到其鄰域中的另一個狀態為一次移動(move),顯然每次移動將導致適配值(反比於目標函數值)的變化。其次,我們採用一個存儲結構來區分移動的屬性,即是否為禁忌“對象”在以下示例中:考慮7元素的置換問題,並用每一狀態的相應21個鄰域解中最優的5次移動(對應最佳的5個適配值)作為候選解;為一定程度上防止迂迴搜索,每個被採納的移動在禁忌表中將滯留3步(即禁忌長度),即將移動在以下連續3步搜索中將被視為禁忌對象;需要指出的是,由於當前的禁忌對象對應狀態的適配值可能很好,因此在演演算法中設置判斷,若禁忌對象對應的適配值優於“ best so far”狀態,則無視其禁忌屬性而仍採納其為當前選擇,也就是通常所說的藐視準則(或稱特赦準則)。
可見,簡單的禁忌搜索是在領域搜索的基礎上,通過設置禁忌表來禁忌一些已經歷的操作,並利用藐視準則來獎勵一些優良狀態,其中領域結構、候選解、禁忌長度、禁忌對象、藐視準則、終止準則等是影響禁忌搜索演演算法性能的關鍵。需要指出的是:
(1)首先,由於TS是局部領域搜索的一種擴充,因此領域結構的設計很關鍵,它決定了當前解的領域解的產生形式和數目,以及各個解之間的關係。
(2)其次,出於改善演演算法的優化時間性能的考慮,若領域結構決定了大量的領域解(尤其對大規模問題,如TSP的SWAP操作將產生Cn2個領域解),則可以僅嘗試部分互換的結果,而候選解也僅取其中的少量最佳狀態。
(3)禁忌長度是一個很重要的關鍵參數,它決定禁忌對象的任期,其大小直接進而影響整個演演算法的搜索進程和行為。同時,以上示例中,禁忌表中禁忌對象的替換是採用FIFO方式(不考慮藐視準則的作用),當然也可以採用其他方式,甚至是動態自適應的方式。
(4)藐視準則的設置是演演算法避免遺失優良狀態,激勵對優良狀態的局部搜索,進而實現全局優化的關鍵步驟。
(5)對於非禁忌候選狀態,演演算法無視它與當前狀態的適配值的優劣關係,僅考慮它們中間的最佳狀態為下一步決策,如此可實現對局部極小的突跳(是一種確定性策略)。
(6)為了使演演算法具有優良的優化性能或時間性能,必須設置一個合理的終止準則來結束整個搜索過程。
此外,在許多場合禁忌對象的被禁次數(frequency)也被用於指導搜索,以取得更大的搜索空間。禁忌次數越高,通常可認為出現循環搜索的概率越大。