有限元分析
有限數量的未知量去逼近無限未知量的真實系統
有限元分析(FEA,Finite Element Analysis)利用數學近似的方法對真實物理系統(幾何和載荷工況)進行模擬。利用簡單而又相互作用的元素(即單元),就可以用有限數量的未知量去逼近無限未知量的真實系統。
有限元分析是用較簡單的問題代替複雜問題后再求解。它將求解域看成是由許多稱為有限元的小的互連子域組成,對每一單元假定一個合適的(較簡單的)近似解,然後推導求解這個域總的滿足條件(如結構的平衡條件),從而得到問題的解。因為實際問題被較簡單的問題所代替,所以這個解不是準確解,而是近似解。由於大多數實際問題難以得到準確解,而有限元不僅計算精度高,而且能適應各種複雜形狀,因而成為行之有效的工程分析手段。
有限元是那些集合在一起能夠表示實際連續域的離散單元。有限元的概念早在幾個世紀前就已產生並得到了應用,例如用多邊形(有限個直線單元)逼近圓來求得圓的周長,但作為一種方法而被提出,則是最近的事。有限元法最初被稱為矩陣近似方法,應用於航空器的結構強度計算,並由於其方便性、實用性和有效性而引起從事力學研究的科學家的濃厚興趣。經過短短數十年的努力,隨著計算機技術的快速發展和普及,有限元方法迅速從結構工程強度分析計算擴展到幾乎所有的科學技術領域,成為一種豐富多彩、應用廣泛並且實用高效的數值分析方法。
有限元法最初應用於航空器的結構強度計算,隨著計算機技術的快速發展和普及,現在有限元方法因其高效已廣泛應用於幾乎所有的科學技術領城。
有限元分析的基本步驟通常為:
第一步前處理:根據實際問題定義求解模型,包括以下幾個方面:
(1)定義問題的幾何區域:根據實際問題近似確定求解域的物理性質和幾何區域。
(2)定義單元類型。
(3)定義單元的材料屬性。
(4)定義單元的幾何屬性,如長度、面積等。
(5)定義單元的連通性。
(6)定義單元的基函數。
(7)定義邊界條件。
(8)定義載荷。
第二步總裝求解:將單元總裝成整個離散層的總矩陣方程(聯合方程組)。總裝是在相鄰單元結點進行。狀志變數及其導數(如果可能)連續性建立在結點處。聯立方程組的求解可用直接法、選代法。求解結果是單元結點處狀態變數的近似值。
第三步后處理:對所求出的解根據有關準則進行分析和評價。后處理使用戶能簡便提取信息,了解計算結果。
有限元方法與其他求解邊值問題近似方法的根本區別在於它的近似性僅限於相對小的子域中。20世紀60年代初首次提出結構力學計算有限元概念的克拉夫(Clough)教授形象地將其描繪為:“有限元法=Rayleigh Ritz法+分片函數”,即有限元法是Rayleigh Ritz法的一種局部化情況。不同於求解(往往是困難的)滿足整個定義域邊界條件的允許函數的Rayleigh Ritz法,有限元法將函數定義在簡單幾何形狀(如二維問題中的三角形或任意四邊形)的單元域上(分片函數),且不考慮整個定義域的複雜邊界條件,這是有限元法優於其他近似方法的原因之一。
有限元分析常用的有限元軟體有ANSYS,SDRC/I-DEAS等。
國產有限元軟體:FEPG,SciFEA,JiFEX,KMAS,FELAC等。
縱觀當今國際上CAE軟體的發展情況,可以看出有限元分析方法的一些發展趨勢:
1、與CAD軟體的無縫集成
當今有限元分析軟體的一個發展趨勢是與通用CAD軟體的集成使用,即在用CAD軟體完成部件和零件的造型設計后,能直接將模型傳送到CAE軟體中進行有限元網格劃分並進行分析計算,如果分析的結果不滿足設計要求則重新進行設計和分析,直到滿意為止,從而極大地提高了設計水平和效率。為了滿足工程師快捷地解決複雜工程問題的要求,許多商業化有限元分析軟體都開發了和著名的CAD軟體(例如Pro/ENGINEER、Unigraphics、SolidEdge、SolidWorks、IDEAS、Bentley和AutoCAD等)的介面。有些CAE軟體為了實現和CAD軟體的無縫集成而採用了CAD的建模技術,如ADINA軟體由於採用了基於Parasolid內核的實體建模技術,能和以Parasolid為核心的CAD軟體(如 Unigraphics、SolidEdge、SolidWorks)實現真正無縫的雙向數據交換。
2、更為強大的網格處理能力
有限元法求解問題的基本過程主要包括:分析對象的離散化、有限元求解、計算結果的后處理三部分。由於結構離散后的網格質量直接影響到求解時間及求解結果的正確性與否,各軟體開發商都加大了其在網格處理方面的投入,使網格生成的質量和效率都有了很大的提高,但在有些方面卻一直沒有得到改進,如對三維實體模型進行自動六面體網格劃分和根據求解結果對模型進行自適應網格劃分,除了個別商業軟體做得較好外,大多數分析軟體仍然沒有此功能。自動六面體網格劃分是指對三維實體模型程序能自動的劃分出六面體網格單元,大多數軟體都能採用映射、拖拉、掃略等功能生成六面體單元,但這些功能都只能對簡單規則模型適用,對於複雜的三維模型則只能採用自動四面體網格劃分技術生成四面體單元。對於四面體單元,如果不使用中間節點,在很多問題中將會產生不正確的結果,如果使用中間節點將會引起求解時間、收斂速度等方面的一系列問題,因此人們迫切的希望自動六面體網格功能的出現。自適應性網格劃分是指在現有網格基礎上,根據有限元計算結果估計計算誤差、重新劃分網格和再計算的一個循環過程。對於許多工程實際問題,在整個求解過程中,模型的某些區域將會產生很大的應變,引起單元畸變,從而導致求解不能進行下去或求解結果不正確,因此必須進行網格自動重劃分。自適應網格往往是許多工程問題如裂紋擴展、薄板成形等大應變分析的必要條件。
3、由求解線性問題發展到求解非線性問題
隨著科學技術的發展,線性理論已經遠遠不能滿足設計的要求,許多工程問題如材料的破壞與失效、裂紋擴展等僅靠線性理論根本不能解決,必須進行非線性分析求解,例如薄板成形就要求同時考慮結構的大位移、大應變(幾何非線性)和塑性(材料非線性);而對塑料、橡膠、陶瓷、混凝土及岩土等材料進行分析或需要考慮材料的塑性、蠕變效應時,則必須考慮材料的非線性。眾所周知,非線性問題的求解是很複雜的,它不僅涉及到很多專門的數學問題,還必須掌握一定的理論知識和求解技巧,故而學習起來也較為困難。為此,國外一些公司花費了大量的人力和物力開發非線性求解分析軟體,如ADINA、ABAQUS等。它們的共同特點是具有高效的非線性求解器、豐富而實用的非線性材料庫,ADINA還同時具有隱式和顯式兩種時間積分方法。
4、由單一結構場求解發展到耦合場問題的求解
有限元分析方法最早應用於航空航天領域,主要用來求解線性結構問題,實踐證明這是一種非常有效的數值分析方法。而且從理論上也已經證明,只要用於離散求解對象的單元足夠小,所得的解就可足夠逼近於精確值。用於求解結構線性問題的有限元方法和軟體已經比較成熟,發展方向是結構非線性、流體動力學和耦合場問題的求解。例如由於摩擦接觸而產生的熱問題,金屬成形時由於塑性功而產生的熱問題,需要結構場和溫度場的有限元分析結果交叉迭代求解,即"熱力耦合"的問題;當流體在彎管中流動時,流體壓力會使彎管產生變形,而管的變形又反過來影響到流體的流動,這就需要對結構場和流場的有限元分析結果交叉迭代求解,即所謂"流固耦合"的問題。由於有限元的應用越來越深入,人們關注的問題越來越複雜,耦合場的求解必定成為CAE軟體的發展方向。
5、程序面向用戶的開放性
隨著商業化的提高,各軟體開發商為了擴大自己的市場份額,滿足用戶的需求,在軟體的功能、易用性等方面花費了大量的投資,但由於用戶的要求千差萬別,不管他們怎樣努力也不可能滿足所有用戶的要求,因此必須給用戶一個開放的環境,允許用戶根據自己的實際情況對軟體進行擴充,包括用戶自定義單元特性、用戶自定義材料本構(結構本構、熱本構、流體本構)、用戶自定義流場邊界條件、用戶自定義結構斷裂判據和裂紋擴展規律等等。
關注有限元的理論發展,採用最先進的演演算法技術,擴充軟體的性能,提高軟體性能以滿足用戶不斷增長的需求,是CAE軟體開發商的主攻目標,也是其產品持續佔有市場,求得生存和發展的根本之道。
Abaqus 6.9有限元發布
達索系統SIMULIA公司發布有限元分析新版本
--------Abaqus 6.9增加在斷裂失效,高性能計算以及噪音振動領域的新功能
2009年5月19日,來自法國巴黎和美國羅德島普羅維登斯的消息-----達索系統(DS)(歐洲交易所 巴黎:#13065, )是3D和產品生命周期管理領域(PLM)全球領先的解決方案提供商;今天宣布:推出Abaqus 6.9,其擁有技術領先的統一有限元分析軟體套裝。
為了評價現實世界中材料的行為,產品和製造工藝過程,設計師,工程師和研究人員把Abaqus應用在包括電子,消費品包裝,航空航天,汽車,能源,和生命科學等廣泛的行業中。此版本提供了重要的新功能,比如斷裂失效,高性能計算,以及噪音和振動。此外,SIMULIA將會繼續豐富產品套裝在實體建模,網格劃分,接觸問題,材料,和多場耦合方面的能力。
汽車配件供應商唐納公司密封產品部高級工程顧問Frank Popielas先生說道:“為了滿足當今快速發展的需求,前期的模擬模擬技術發揮著重要的作用。Abaqus 6.9和高性能計算集群之間的協同作用將幫助我們最大限度地減少單位成本和保持最佳的周轉時間。”
達索系統SIMULIA產品管理總監Steve Crowley說道:“通過在新功能的定義和審查方面與我們的客戶密切合作,我們開發了最強大的有限元分析軟體。在一個統一的有限元分析的環境中,Abaqus 6.9使得製造企業加強了他們非線性和線性分析過程的能力。”
發布重點:
擴展有限元法(XFEM),實施並提供一個功能強大的工具用於模擬與單元邊界無關的任意路徑的裂紋擴展。在航空航天工業,XFEM可以聯合Abaqus的其他能力預測飛機複合材料結構的耐久性和損傷容限。在能源行業,它可以協助評估壓力容器中裂縫的萌生和生長。
通用接觸應用,提供了一個簡化的和高度自動化的方法來定義模型中的接觸面。這種能力對建模中複雜的裝配,諸如齒輪系統,液壓缸,或其它部件需要接觸的產品,提供了實質有效的改進。
一種新聯合模擬方法,用戶可以將Abaqus的隱式和顯式求解器應用到一個單一的模擬模擬中——使得計算時間大大減少。例如,汽車工程師可以將一個車輛模型的代表性機構和用輪胎和懸掛系統組成的模型結合在一起評價車輛在粗糙不平道路上運行的耐久性。
Abaqus/CAE技術提供更快,更有力的網格劃分和強大的結果可視化技術。
增強的表現,AMS特徵求解器顯著提高了大規模線性動力學工作流程的效率,如汽車噪音和振動分析。
一個新的粘性剪切模型可以模擬非牛頓流體,如血液,粘合劑,熔融聚合物,和經常使用的消費產品和工業應用中的其它液體。
隨著市場競爭的加劇,產品更新周期愈來愈短,企業對新技術的需求更加迫切,而有限元數值模擬技術是提升產品質量、縮短設計周期、提高產品競爭力的一項有效手段,所以,隨著計算機技術和計算方法的發展,有限元法在工程設計和科研領域得到了越來越廣泛的重視和應用,已經成為解決複雜工程分析計算問題的有效途徑,從汽車到太空梭幾乎所有的設計製造都已離不開有限元分析計算,其在機械製造、材料加工、航空航天、汽車、土木建築、電子電器、國防軍工、船舶、鐵道、石化、能源和科學研究等各個領域的廣泛使用已使設計水平發生了質的飛躍。
Wiseteam圖形工作站
Wiseteam致力於高性能計算、圖形工作站、高性能存儲伺服器、CG設計產品的研發,並將業界最先進的理念和高性能的產品帶給中國的科研、設計人員。
wiseteam工作站針對軟體應用推出一系列產品。採用英特爾至強15核心、12核心、10核心、8核心、6核心等處理器推出單機120核心、80核心、60核心、40核心、32核心、16核心、12核心等高端圖形工作站.
Wiseteam圖形工作站系列
超級工作站SU---應用領域:超大規模的科學計算、數值模擬、有限元分析、可視化超大圖形等
移動工作站FL---應用領域:三維製作、建築設計、CAD、CAE、圖形圖像處理、影視製作、動畫渲染等
極速工作站SP---應用領域:地震處理、計算流體力學、計算機輔助工程、金融計算、計算化學與物理學
通用工作站GE---應用領域:中小規模的科學計算、數值模擬、CAD、圖形圖像處理、影視動畫等
機架式工作站GA---應用領域:衛星圖像處理、視頻增強、信號處理、計算機視覺、視頻轉碼以及數字處理
非線編輯工作站NE---非線編輯、視頻後期處理
超級存儲伺服器AR---應用領域:大規模數據存儲
集群系統RF----大數據計算、超高圖形渲染、高性能計算