共找到2條詞條名為楊黃浩的結果 展開

楊黃浩

福州大學副校長

楊黃浩,男,教授,博士生導師。1975年生,2002年獲廈門大學博士學位,同年進入香港科技大學從事博士后研究。2004年被聘任為國家海洋局第一海洋研究所責任研究員。2007年作為訪問教授在美國佛羅里達大學化學系譚蔚泓教授課題組進行一年的合作研究。2008年9月進入福州大學工作,並被聘為福建省“閩江學者特聘教授”。 2011年度國家傑出青年科學基金獲得者。 2012年度教育部長江學者特聘教授。 2013年度國家萬人計劃科技創新領軍人才。2014年度國家百千萬人才工程人選,國家有突出貢獻中青年專家。 2015年度全國先進工作者。

現任福州大學副校長

教育工作經歷


1997-2002:廈門大學化學化工學院,博士,從事生命分析化學研究
2002-2004:香港科技大學化學系,博士后,從事納米材料合成和生物感測研究
2004-2007:國家海洋局第一海洋研究所,責任研究員,從事功能材料合成和生物感測研究
2007-2008:美國佛羅里達大學化學系,訪問教授,從事癌細胞核酸適體篩選和生物感測研究
2008-——2017年6月福州大學化學化工學院,福建省“閩江學者特聘教授”,博士生導師,從事生命分析和納米醫學研究
2017年6月——福州大學副校長

科研簡介


在生命分析和納米醫學研究領域,以及生物成像研究領域,進行了較為深入的研究,在方法學和實際應用方面取得了系統性的創新研究成果。已主持13項國家級和3項省部級重大重點科技項目,包括國家973計劃課題1項、國家863計劃課題2項、國家重大科學儀器設備開發專項課題1項、國家科技支撐計劃課題1項、國家自然科學基金5項、教育部創新團隊項目1項目等,累計主持科研經費超過2500萬元。近年來,以通訊作者發表SCI論文50餘篇(包括J. Am. Chem. Soc. 5篇、Angew. Chem. Int. Ed. 2篇、Adv. Materials 1篇、NPG Asia Materials 1篇、Anal. Chem. 8篇、Chem. Commun.8篇等)。以通訊作者發表論文,已被他引3000餘次,單篇最高被他引超過600次。研究工作曾多次被Nature Chemistry、Nature China、NPG Asia Materials、ACS Chemical & Engineering News 等刊物和網站作為亮點介紹,並被英文綜述大篇幅引用。

社會兼職


英國皇家化學會會士
Science China Chemistry編委
食品安全分析與檢測教育部重點實驗室主任
“食品安全分析檢測與感測技術”教育部創新團隊帶頭人
中國儀器儀錶學會化學感測器專業委員會委員

科研項目


1、仿生分子識別體系與生物感測研究,國家傑出青年科學基金,2012-2015
2、“食品安全分析檢測與感測技術”創新團隊,教育部創新團隊發展計劃項目,2012-2014
3、分子印跡材料-增強拉曼光譜技術在食品安全分析中的應用,科技部重大科學儀器設備開發專項子課題,2012-2015
4、分子印跡識別體系與分子探針的構建與性能研究,國家973計劃課題,2010-2014
5、教育部新世紀優秀人才支持計劃,2010-2012
6、石墨烯在生物醫學中應用的基礎研究,福建省傑出青年科學基金,2010-2013
7、石墨烯在生命分析化學中的應用基礎研究,國家自然科學基金,2010-2012
8、分析化學省級重點學科,中央財政支持地方高校發展專項資金項目,2010-2011
9、活性可控分子印跡技術及其在生命分析化學中的應用,國家自然科學基金,2008-2010
10、海洋有毒有機污染物現場檢測仿生感測器,國家863計劃課題,2006-2010
11、分子印記納米材料的合成及其仿生識別研究,國家自然科學基金,2005-2007
12、海水中有機農藥仿生識別監測技術研究,國家863計劃課題,2004-2005

代表性論文


A general colorimetric detection of proteins and small molecules based on cyclic enzymatic signal amplification and hairpin aptamer probe, Anal. Chem., 2012, 84, 5309-5315. 2. A graphene oxide (GO)-based molecular beacon for DNA-binding transcription factor detection, Nanoscale, 2012, 4, 3655-3659. 3. Ultrasensitive detection of Cu2+ with the naked eye and application in immunoassays, NPG Asia Materials, 2012, 4, e10, doi:10.1038/am.2012.18. 4. Enzyme-free signal amplification in the DNAzyme sensor via target-catalyzed hairpin assembly, Chem. Commun., 2012, 48, 3112-3114. 5. Nicking enzyme based homogeneous aptasensors for amplification detection of protein, Chem. Commun., 2012, 48, 374-376. 6. General approach for monitoring peptide-protein interactions based on graphene-peptide complex, Anal. Chem., 2011, 83, 7276-7282. (Highlighted by ACS Chem. & Eng. News) 7. A simple and ultrasensitive electrochemical DNA biosensor based on DNA concatamers, Chem. Commun., 2011, 47, 12116-12118. 8. An ultrasensitive electrochemical biosensor for detection of DNA species related to oral cancer based on nuclease-assisted target recycling and amplification of DNAzyme, Chem. Commun., 2011, 47, 8004-8006. 9. Bioresponsive controlled release using mesoporous silica nanoparticles capped with aptamer-based molecular gate, J. Am. Chem. Soc., 2011, 133, 1278-1281. (Highlighted by SciTech Profiles Asia-Pacific) 10. Amplified aptamer-based assay through catalytic recycling of the analyte, Angew. Chem. Int. Ed., 2010, 49, 8454-8457. 11. Using graphene to protect DNA from cleavage during cellular delivery, Chem. Commun., 2010, 46, 3116-3118. (Highlighted by Nature China and ACS Chem. & Eng. News) 12. Increasing the sensitivity and single-base mismatch selectivity of the molecular beacon using graphene Oxide as the "nanoquencher", Chem.-Eur. J., 2010, 16, 4889-4894. 13. An ultrahighly sensitive and selective electrochemical DNA sensor via nicking endonuclease assisted current change amplification, Chem. Commun., 2010, 46, 5939-5941. 14. Mussel-inspired molecularly imprinted polymer coating superparamagnetic nanoparticles for protein recognition, J. Mater. Chem., 2010, 20, 880-883. 15. An efficient cell-targeting and intracellular controlled-release drug delivery system based on MSN-PEM-aptamer conjugates, J. Mater. Chem., 2009, 19, 7765-7770. 16. A graphene platform for sensing biomolecules, Angew. Chem. Int. Ed., 2009, 48, 4785-4787. (Highlighted by NPG Asia Materials) 17. Amplified detection of protein cancer biomarkers using DNAzyme functionalized nanoprobes, Chem. Commun., 2009, 45, 6845-6847. 18. Bifunctional superparamagnetic surface molecularly imprinted polymer core-shell nanoparticles, J. Mater. Chem., 2009, 19, 1077-1079. 19. Engineering target-responsive hydrogels based on aptamer-target interactions, J. Am. Chem. Soc., 2008, 130, 6320-6321. (Highlighted by Nature Chemistry) 20. Surface imprinted core-shell nanoparticles for sorbent assays, Anal. Chem., 2007, 79, 5457-5461. 21. Template synthesized molecularly imprinted polymer nanotube membranes for chemical separations, J. Am. Chem. Soc., 2006, 128, 15954-15955. 22. Protein recognition via surface molecularly imprinted polymer nanowires, Anal. Chem., 2006, 78, 317-320. 23. Surface molecularly imprinted nanowires for biorecognition, J. Am. Chem. Soc., 2005, 127, 1378-1379. 24. Magnetite-containing spherical silica nanoparticles for biocatalysis and bioseparations, Anal. Chem., 2004, 76, 1316-1321. 25. Molecularly imprinted sol-gel nanotubes membrane for biochemical separations, J. Am. Chem. Soc., 2004, 126, 4054-4055.
1.
A general colorimetric detection of proteins and small molecules based on cyclic enzymatic signal amplification and hairpin aptamer probe, Anal. Chem., 2012, 84, 5309-5315. 2. A graphene oxide (GO)-based molecular beacon for DNA-binding transcription factor detection, Nanoscale, 2012, 4, 3655-3659. 3. Ultrasensitive detection of Cu2+ with the naked eye and application in immunoassays, NPG Asia Materials, 2012, 4, e10, doi:10.1038/am.2012.18. 4. Enzyme-free signal amplification in the DNAzyme sensor via target-catalyzed hairpin assembly, Chem. Commun., 2012, 48, 3112-3114. 5. Nicking enzyme based homogeneous aptasensors for amplification detection of protein, Chem. Commun., 2012, 48, 374-376. 6. General approach for monitoring peptide-protein interactions based on graphene-peptide complex, Anal. Chem., 2011, 83, 7276-7282. (Highlighted by ACS Chem. & Eng. News) 7. A simple and ultrasensitive electrochemical DNA biosensor based on DNA concatamers, Chem. Commun., 2011, 47, 12116-12118. 8. An ultrasensitive electrochemical biosensor for detection of DNA species related to oral cancer based on nuclease-assisted target recycling and amplification of DNAzyme, Chem. Commun., 2011, 47, 8004-8006. 9. Bioresponsive controlled release using mesoporous silica nanoparticles capped with aptamer-based molecular gate, J. Am. Chem. Soc., 2011, 133, 1278-1281. (Highlighted by SciTech Profiles Asia-Pacific) 10. Amplified aptamer-based assay through catalytic recycling of the analyte, Angew. Chem. Int. Ed., 2010, 49, 8454-8457. 11. Using graphene to protect DNA from cleavage during cellular delivery, Chem. Commun., 2010, 46, 3116-3118. (Highlighted by Nature China and ACS Chem. & Eng. News) 12. Increasing the sensitivity and single-base mismatch selectivity of the molecular beacon using graphene Oxide as the "nanoquencher", Chem.-Eur. J., 2010, 16, 4889-4894. 13. An ultrahighly sensitive and selective electrochemical DNA sensor via nicking endonuclease assisted current change amplification, Chem. Commun., 2010, 46, 5939-5941. 14. Mussel-inspired molecularly imprinted polymer coating superparamagnetic nanoparticles for protein recognition, J. Mater. Chem., 2010, 20, 880-883. 15. An efficient cell-targeting and intracellular controlled-release drug delivery system based on MSN-PEM-aptamer conjugates, J. Mater. Chem., 2009, 19, 7765-7770. 16. A graphene platform for sensing biomolecules, Angew. Chem. Int. Ed., 2009, 48, 4785-4787. (Highlighted by NPG Asia Materials) 17. Amplified detection of protein cancer biomarkers using DNAzyme functionalized nanoprobes, Chem. Commun., 2009, 45, 6845-6847. 18. Bifunctional superparamagnetic surface molecularly imprinted polymer core-shell nanoparticles, J. Mater. Chem., 2009, 19, 1077-1079. 19. Engineering target-responsive hydrogels based on aptamer-target interactions, J. Am. Chem. Soc., 2008, 130, 6320-6321. (Highlighted by Nature Chemistry) 20. Surface imprinted core-shell nanoparticles for sorbent assays, Anal. Chem., 2007, 79, 5457-5461. 21. Template synthesized molecularly imprinted polymer nanotube membranes for chemical separations, J. Am. Chem. Soc., 2006, 128, 15954-15955. 22. Protein recognition via surface molecularly imprinted polymer nanowires, Anal. Chem., 2006, 78, 317-320. 23. Surface molecularly imprinted nanowires for biorecognition, J. Am. Chem. Soc., 2005, 127, 1378-1379. 24. Magnetite-containing spherical silica nanoparticles for biocatalysis and bioseparations, Anal. Chem., 2004, 76, 1316-1321. 25. Molecularly imprinted sol-gel nanotubes membrane for biochemical separations, J. Am. Chem. Soc., 2004, 126, 4054-4055.

獲獎情況


2006年獲中國化學會青年化學獎
2009年入選教育部新世紀優秀人才支持計劃
2010年獲福建省傑出青年科學基金
2011年獲福建省青年科技獎
2011年獲國家傑出青年科學基金
2011年作為帶頭人獲教育部“長江學者和創新團隊發展計劃”創新團隊
2012年入選福建省引進高層次創業創新人才
2012年入選福建省高校領軍人才
2013年入選國家中青年科技創新領軍人才
2013年入選教育部長江學者特聘教授
2014年入選國家萬人計劃
2014年獲福建省自然科學獎一等獎

人事任免


2017年6月22日福建省人民政府 決定任命楊黃浩為福州大學副校長(試用期一年)