變換編碼

變換編碼

變換編碼,是從頻域的角度減小圖像信號的空間相關性,它在降低數碼率等方面取得了和預測編碼相近的效果。進入80年代后,逐漸形成了一套運動補償和變換編碼相結合的混合編碼方案,大大推動了數字視頻編碼技術的發展。

發展歷程


變換編碼是於1968年Pratt首先提出,採用傅里葉變換。後來相繼出現了Walsh變換、斜變換、k-l變換以及離散餘弦變換(DCT)等。

簡介


變換編碼
變換編碼
變換編碼不是直接對空域圖像信號進行編碼,而是首先將空域圖像信號映射變換到另一個正交矢量空間(變換域或頻域),產生一批變換係數,然後對這些變換係數進行編碼處理。變換編碼是一種間接編碼方法,其中關鍵問題是在時域或空域描述時,數據之間相關性大,數據冗餘度大,經過變換在變換域中描述,數據相關性大大減少,數據冗餘量減少,參數獨立,數據量少,這樣再進行量化,編碼就能得到較大的壓縮比。典型的准最佳變換有DCT(離散餘弦變換)、DFT(離散傅里葉變換)、WHT(Walsh Hadama 變換)、HrT(Haar 變換)等。其中,最常用的是離散餘弦變換。
在變換編碼中的比特分配中,分區編碼是基於
最大方差準則;閾值編碼是基於最大幅度準則。變換編碼是失真編碼的一種重要的編碼類型,一般來說,信號壓縮是指將信號進行換基處理后,在某個正交基下變換為展開係數按一定量級呈指數衰減,具有非常少的大係數和許多小係數的信號,這種通過變換時限壓縮的方法稱為變換編碼。

核心


變換是變換編碼的核心。理論上最理想的變換應使信號在變換域中的樣本相互統計獨立。實際上一般不可能找到能產生統計獨立樣本的可逆變換,人們只能退而要求信號在變換域中的樣本相互線性無關。滿足這一要求的變換稱為最佳變換。“卡一洛變換”是符合這一要求的一種線性正交變換,並將其性能作為一種標準,用以比較其它變換的性能。卡一洛變換中的基函數是由信號的相關函數決定的。對平穩過程,當變換的區間T趨於無窮時,它趨於復指數函數。
變換編碼中實用的變換,不但希望能有最佳變換的性能,而且要有快速的演演算法。而卡一洛變換不存在快速演演算法,所以在實際的變換編碼中不得不大量使用各種性能上接近最佳變換、同時又有快速演演算法的正交變換。正交變換可分為非正弦類和正弦類。非正弦類變換以沃爾什變換、哈爾變換、斜變換等為代表,其優點是實現時計算量小,但它們的基矢量很少能反映物理信號的機理和結構本質,變換的效果不甚理想。而正弦類變換以離散傅里葉變換、離散正弦變換、離散餘弦變換等為代表,其最大優點是具有趨於最佳變換的漸近性質。例如,離散正弦變換和離散餘弦變換已被證明是在一階馬氏過程下卡一洛變換的幾種特例。由於這一原因,正弦類變換已日益受到人們的重視。
變換編碼雖然實現時比較複雜,但在分組編碼中還是比較簡單的,所以在語音和圖像信號的壓縮中都有應用。國際上已經提出的靜止圖像壓縮和活動圖像壓縮的標準中都使用了離散餘弦變換編碼技術。