大氣光學
大氣光學
大氣光學,大氣物理學的一個分支,是研究光通過大氣時的相互作用和由此產生的各種低層大氣光象的一門學科。
大氣光學
大氣光學
大氣光學的理論和光波傳播的規律,在大氣輻射學、環境科學、天氣預報、天文、航空、遙感等許多方面,已得到廣泛的應用。大氣光學是研究光通過大氣時的相互作用和由此產生的各種低層大氣的光學現象的一門學科。它是大氣物理學的一個分支。大氣光學的研究可從兩個角度出發:一是把大氣當作一種連續介質;二是把大氣當作由空氣分子、氣溶膠和水汽凝成物組成的混和物。因為大氣光學和許多光學(包括紅外激光)工程的研製有密切的關係,所以它在國民經濟和國防建設中都有重要地位。
大氣光學
而大氣光學作為現代科學的研究和發展,則和光學的研究進展有著密切的聯繫。19世紀末,英國科學家瑞利首先解釋了天空的藍色:在清潔大氣中,起主要散射作用的是大氣氣體分子的密度漲落。分子散射的光強度和入射波長四次方成反比,因此在發生大氣分子散射的日光中,紫、藍和青色彩光比綠、黃、橙和紅色彩光為強,最後綜合效果使天穹呈現藍色。從而建立了瑞利散射理論。
大氣光學
其次是大氣散射引起的光現象。天穹色彩的變化就是大氣散射引起的光現象之一,比如清潔的大氣使天穹呈現藍色。當大氣十分渾濁、大氣中懸浮粒子大量增加時,天穹呈現青灰色,在天邊甚至出現不透明的灰白色。曙暮光是大氣散射的另一現象。當太陽在地平面以下時,太陽光無法直接到達地面,但是它能照亮地面以上的大氣層,使天空明亮。曙暮光指的就是黎明和黃昏這段時間的光亮。
還有就是大粒子(如水滴、冰晶等)對光的折射、反射與衍射引起的光現象,最常見的有虹、華和暈。虹是由於太陽光線在大氣水滴里的折射與反射產生的圍繞反日點的彩色圓弧;華是由於雲中的水滴與冰針分別起小孔與狹縫的作用,使光衍射引起的圍繞太陽(或月亮)的許多彩色圓環;暈是由於太陽(或月亮)光在冰晶上折射與反射引起的一系列光學現象的總稱。根據著色的性質,有由於折射而引起的略帶色彩的暈(如彩虹圓環、幻日等)以及由反射引起的白色暈(如水平環、側日等)之分。能見度是指人眼在大氣中觀察到的最遠距離。它取決於下列各種因素,如物體和背景的屬性、物體和背景照度的屬性、大氣屬性以及觀測儀器(包括肉眼)的屬性等等。發展了一種能見度儀,它直接測量大氣透過率和背景亮度等氣象要素,通過計算機進行綜合分析來計算能見距離。該儀器可以比較客觀地反映大氣實際的能見度,在一些機場已被採用。
天空背景是指來自天空的向下輻射通量,其中包括大氣和雲對太陽光的散射輻射以及大氣氣體的自發輻射,夜間還包括少量的月光和星光的散射。一般而言,對太陽光的散射輻射主要集中在短波部分。在晴天,最大輻射通量的波長為0.45微米左右,而氣體的自發輻射主要集中在長波部分,最大輻射通量的波長為10.5微米左右。天空背景輻射通量的大小及其空間分佈是十分複雜的,它主要取決於幾種影響因子的組合。這些影響因子包括太陽的高度、下墊面的反射率、觀測點離地面的高度、雲量、雲狀、大氣透明度以及大氣狀態等。
光在大氣中的傳輸性能是指光波通過大氣所引起的光學特性的變化。它主要包括由於大氣散射與吸收造成的輻射能量損失的大氣衰減;由於大氣折射率的隨機起伏造成的光束的光強起伏(閃爍)、漂移擴展以及相干性破壞等的大氣湍流效應;以及光在大氣中傳輸的非線性光學效應,這種效應必須在強激光傳輸中才能顯示出來,因此又稱為強激光大氣傳輸的非線性效應。
根據大氣光學現象以及光的傳輸特性,利用自然光或人工光源可以遙感大氣某些物理量。例如對太陽輻射衰減的測量確定斜程大氣的混濁度;通過對太陽光紫外輻射衰減的測量,確定大氣臭氧的總量;利用多波長紅外輻射計測量太陽的散射輻射強度,可以推斷整層大氣氣溶膠濃度與譜分佈等等。
大氣光學
光學、幾何光學、波動光學、大氣光學、海洋光學、量子光學、光譜學、生理光學、電子光學、集成光學、空間光學、物理學、力學、熱學、光學、聲學、電磁學、核物理學、固體物理學、大氣科學、氣候學、物候學、古氣候學、年輪氣候學、大氣化學、動力氣象學、大氣物理學、大氣邊界層物理、雲和降水物理學、雲和降水微物理學、雲動力學、雷達氣象學、無線電氣象學、大氣輻射學、大氣電學、平流層大氣物理學、大氣聲學、天氣學、熱帶氣象學、極地氣象學、衛星氣象學、生物氣象學、農業氣象學、森林氣象學、醫療氣象學、水文氣象學、建築氣象學、航海氣象學、航空氣象學、軍事氣象學、空氣污染氣象學。