體積元

體積元

體積元(volume element)是一種外微分形式,微分流形上與定向相符的外微分形式。更一般地,一個體積元是流形上一個測度。

內容簡介


數學中,體積元提供了函數在不同坐標系(比如球坐標和圓柱坐標)下對 體積積分的一種工具。更一般地,一個體積元是流形上一個測度。
在一個定向 -維流形上,體積元典型地由 體積形式生成,所謂體積元是一個處處非零的 -階微分形式。一個流形具有體積形式當且僅當它是可定向的,而可定向流形有無窮多個體積形式(細節見下)。
有一個推廣的 偽體積形式概念,對無論可否定向的流形都存在。
許多類型的流形有典範的(偽)體積形式,因為它們有額外的結構保證可選取一個更好的體積形式。在復情形,一個帶有全純體積形式的凱勒流形是卡拉比-丘流形

定義介紹


流形 上一個體積形式是處處非0的最高階( -維流形上的 -形式)微分形式。用線叢的語言來說,稱最高階外積 為 行列式線叢,-形式是它的截面。
對不可定向流形,一個體積“偽”形式,也稱為“奇”或“扭曲”的體積形式,可以定義為定向叢的一個處處非0截面;這個定義同樣適用於定向流形。在這種看法下,(非扭曲的)微分形式就是“偶” -形式。除非特別地討論扭曲形式時,我們總是略去形容詞“偶”。
第一次明確地引入扭曲微分形式是德拉姆。

定向介紹


一個流形具有體積形式當且僅當它可定向,這也可以作為可定向的一個定義。
在 -結構的語言中,一個體積形式是一個 -結構。因為 是形變收縮(因為,這裡正實數視為純量矩陣),一個流形具有一個SL-結構當且僅當具有一個 -結構,即是一個定向。
在線叢的語言中,行列式叢 的平凡性等價於可定向性,而一個線叢是平凡的當且僅當它有一個處處非0的截面,這樣又得到,體積形式的存在性等價於可定向性。
對於偽體積形式,一個偽體積形式是一個 -結構,因為 同倫等價(事實上是形變收縮),任何流形都有偽體積形式。類似地,定向叢總是平凡的,所以任何流形都有一個偽體積形式。

測度關係


任何流形有一個偽體積形式,因為定向叢(作為線叢)是平凡的。給定一個定向流形上的體積形式,密度 是忘掉定向結構的非定向流形的一個偽體積形式。
任何偽體積形式(從而任何體積形式亦然)定義了一個波萊爾集合上一個測度:
注意區別,在於任何一個測度可以在(Borel)子集上積分,而一個體積形式只能在一個“定向”胞腔上積分。在單變數微積分中,寫成,將 視為體積形式而不是測度,表明“在 上沿著定向相反的反向積分”,有時記成。
進一步,一般的測度不必連續或光滑,他們不必由體積形式定義;或更形式地說,關於一個體積形式的Radon-Nikodym導數不必絕對連續。

例子介紹


李群

任何李群,可以由平移定義一個自然的體積形式。這就是說,如果 是 中一個元素,那麼一個左不變形式可以定義為,這裡 為左平移。作為一個推論,任何李群都是可定向的。這個體積形式在相差一個常數的意義下是惟一的,相應的測度稱為哈爾測度。

辛流形

任何辛流形(或更確切地為殆辛流形)有一個自然的體積形式。如果 是一個帶有辛形式 的 -維流形,那麼由辛形式非退化可知 處處非零。作為一個推論,任何辛流形是可定向的(事實上,已經定向)。

黎曼

任何黎曼流形(或偽黎曼流形)有一個自然的體積(或偽體積)形式。在局部坐標系下,能寫成表達式:
這裡流形為 -維,是流形上度量張量行列式的絕對值,為組成流形餘切叢一組基的1形式。
這個體積形式有許多不同的記號,包括:
這裡 是霍奇對偶,從而最後一個形式 強調體積形式是流形上常數映射的霍奇對偶。
儘管希臘字母ω經常用於表示體積形式,但是這個記法很難通用,符號ω在微分幾何中經常有其它意思(比如辛形式),所以一個公式中的ω不一定就表示體積形式。
一個流形如果既是辛的又是黎曼的,如果流形是凱勒的那種方式定義的體積形式相等。

曲面

體積形式一個簡單的例子可以考慮嵌入 -維歐幾里得空間中的2-維曲面。考慮子集,以及映射函數
定義了嵌入到 中的一個曲面。映射的雅可比矩陣為
指標 從1跑到,從1跑到2。 -維空間的歐幾里得度量誘導了集合 U上的一個度量,度量矩陣分量為:
度量的行列式由
給出,這裡 是楔積。對一個正則曲面,這個行列式不為0;等價地,雅可比矩陣的秩為2。
現在考慮 的一個坐標變換,由微分同胚給出。從而坐標 用 形式表示是。坐標變換的雅可比矩陣為:
在新坐標系下,我們有:
從而度量變換為:
這裡 是在 v坐標系下的度量。行列式:
給出以上構造后,現在可以直接理解為什麼體積在坐標變換下不變的。在2維,體積就是面積。子集 的面積由積分:
給出。從而,在任一坐標系下,體積都有相同的表達式,即這個表達式在坐標變換下是不變的。
注意到在以上表達式中2維並沒有任何特殊性,以上結論可以平凡地推廣到任意維數。