諧波電流
諧波電流
諧波電流就是將非正弦周期性電流函數按傅立葉級數展開時,其頻率為原周期電流頻率整數倍的各正弦分量的統稱。頻率等於原周期電流頻率k倍的諧波電流稱為k次諧波電流,k大於1的各諧波電流也統稱為高次諧波電流。諧波電流和諧波電壓的出現,對公用電網是一種污染,它使用電設備所處的環境惡化,也對周圍的用電設備造成影響。電力網中非線性負載的逐漸增加是全世界共同的趨勢,如變頻驅動或晶閘管整流直流驅動設備、計算機、重要負載所用的不間斷電源(UPS) 、節能熒光燈系統等,這些非線性負載將導致電網污染,電力品質下降,引起供用電設備故障, 甚至引發嚴重火災事故等。諧波電流會導致變壓器,電動機和備用發電機的運行溫度(K參數)嚴重升高。
一個周期信號可以通過傅里葉變換分解為直流分量c0和不同頻率的正弦信號的線性疊加:
其中,
為m次諧波的表達式,cm表示m次諧波的幅值,其角頻率為mω,初始相位為φm,其有效值為cm/√2。
當m=1時,
為基波分量的表達式,其角頻率為ω,初始相位為φ1,其方均根值c1/√2稱為基波有效值。
諧波電流
諧波電流是其頻率為原周期電流頻率整數倍的各正弦分量的統稱。
一般來說, 理想的交流電源應是純正弦波形,但因現實世界中的輸出阻抗及非線性負載的原因,,導致電源波形失真。若電壓頻率是60Hz,,將失真的電壓經傅立葉轉換分析后,可將其電壓組成分解為除了基頻(60Hz)外,倍頻(120Hz, 180Hz,…..)成份的組合。其倍頻的成份就稱為諧波:harmonic。整流性負載的大量使用,造成大量的諧波電流,諧波電流產生電壓的諧波成份,間接污染了市電。另外一些市售的發電機或UPS本身輸出電壓就非純正弦波,甚至有方波的情形,失真情形更嚴重,所含諧波成份佔了很大的比例。
對該問題的介紹基於以下幾個方面:基本原理、主要現象和防止諧波故障的建議。由於功率轉換(整流和逆變)而導致配電系統污染的問題早在1960年代初就被許多專家意識到了。直到1980年代初,日益增長的設備故障和配電系統異常現象,使得解決這一問題成為迫在眉睫的事情。今天,許多生產過程中沒有電力電子裝置是不可想象的。以下用電設備在許多工廠都得到了應用:
1)照明控制系統(亮度調節)
2)開關電源(計算機,電視機)
3)電動機調速設備
4)自感飽和鐵芯
5)不間斷電源
6)整流器
7)電焊設備
8)電弧爐
9)機床(CNC)
10)電子控制機構
11)EDM機械
所有這些非線性用電設備都會產生諧波,它可導致配電系統本身或聯接在該系統上的設備故障。僅考慮導致設備故障的根源就在發生故障現象的用電工廠內可能是錯誤的。故障也可能是由於相鄰工廠產生的諧波影響到公用配電網路而產生的。在您安裝一套功率因數補償系統之前,如下工作是非常重要的:對配電系統進行測試以確定什麼樣的系統結構對您是合適的。可調諧的濾波電路和組合濾波器已經是眾所周知的針對諧波問題的解決方案。另外的方法就是使用動態有源濾波器。
1)諧波吸收器(調諧的)
由一個扼流線圈和一個電容器串聯組成的諧振電路並調諧為對諧波電流具有極小的阻抗。該調諧的諧振電路用於精確地清除配電網路中的主要諧波成分。
2)諧波吸收器(非調諧的)
由一個扼流線圈和一個電容器串聯組成的諧振電路並調諧為低於最低次諧波的頻率以防止諧振。
3)諧波電流
諧波電流是由設備或系統引入的非正弦特性電流。諧波電流疊加在主電源上。
4)諧波
其頻率為配電系統工作頻率倍數的波形。按其倍數稱為 n 次( 3 、 5 、 7 等)諧波分量。
5)諧波電壓
諧波電壓是由諧波電流和配電系統上產生的阻抗導致的電壓降。
6)阻抗
阻抗是在特定頻率下配電系統某一點產生的電阻。阻抗取決於變壓器和連在系統上的用電設備,以及所採用導體的截面積和長度。
7)阻抗係數
阻抗係數是 AF (載波)阻抗相對於 50Hz (基波)阻抗的比率。
8)並聯諧振頻率
網路阻抗達到最大值的頻率。在並聯諧振電路中,電流分量 I L 和 I C 大於總電流 I 。
9)無功功率
10)無功功率補償
11)諧振
在配電系統里的設備,與它們存在的電容 ( 電纜,補償電容器等 ) 和電感 ( 變壓器,電抗線圈等 ) 形成共振電路。後者能夠被系統諧波激勵而成為諧振。配電系統諧波的一個原因是變壓器鐵芯非線性磁化的特性。在這種情況下主要的諧波是 3 次的;它在全部 導體內與單相分量具有相同的長度,因而在星形點上不能消除。
12)諧振頻率
每個電感和電容的連接形成一個具有特定共振頻率的諧振電路。一個網路有幾個電感和電容就有幾個諧振頻率。
13)串聯諧振諧電路
由電感(電抗器)和電容 ( 電容器 ) 串聯的電路。
14)串聯諧振頻率
網路的阻抗水平達到最小的頻率。在串聯諧振電路內分路電壓 U L 和 U C 大於總電壓 U 。
15)分數次諧波
頻率不是基波分量倍數的正弦曲線波。
MKP 和 MPP 技術之間的區別在於電力電容器在補償系統中的連接方式。
1)MKP( MKK , MKF) 電容器
這項技術是在聚丙烯薄膜上直接鍍金屬。其尺寸小於用 MPP 技術的電容器。因為對生產過程較低的要求,其製造和原料成本比 MPP 技術要相對地低很多。 MKP 是最普遍的電容器技術,並且由於小型化設計和電介質的能力,它具有更多的優點。
2)MPP( MKV) 電容器
MPP 技術是用兩面鍍金屬的紙板作為電極,用聚丙烯薄膜作為介質。這使得它的尺寸大於採用 MKP 技術的電容器。生產是非常高精密的,因為必須採用真空乾燥技術從電容器繞組中除去全部殘餘水分而且空腔內必須填注絕緣油。這項技術的主要優勢是它對高溫的耐受性能。
3)自愈
兩種類型的電容器都是自愈式的。在自愈的過程中電容器儲存的能量在故障穿孔點會產生一個小電弧。電弧會蒸發穿孔點臨近位置的細小金屬,這樣恢復介質的充分隔離。電容器的有效面積在自愈過程中不會有任何實際程度的減少。每隻電容都裝有一個過壓分斷裝置以保護電氣或熱過載。測試是符合 VDE 560 和 IEC 70 以及 70A 標準的。
直到大約1978年,製造電力電容器仍然使用包含PCB的介質注入技術。後來人們發現,PCB 是有毒的,這種有毒的氣體在燃燒時會釋放出來。這些電容器不再被允許使用並且必須處理,它們必須被送到處理特殊廢料的焚化裝置里或者深埋到安全的地方。
包含PCB 的電容器有大約30 W/kvar的功率損耗值。電容器本身由鍍金屬紙板做成。
由於這種電容被禁止使用,一種新的電容技術被開發出來。為了滿足節能趨勢的要求,發展低功耗電容器成為努力的目標。
新的電容器是用乾燥工藝或是用充入少量油( 植物油)的技術來生產的,用鍍金屬塑料薄膜代替鍍金屬紙板,因此新電容充分顯示出了其環保的特性,並且功耗僅為0.3 W/kvar。這表明改進后使功耗降至原來的1/100。這些電容器是根據常規電網條件而開發的。在能源危機的過程中,人們開始相控技術的研究。相位控制的結果是導致電網的污染和其它故障。
由於前一代電容器存在一個很高的自電感,高頻的電流和電壓(諧波) 不能被吸收,而新的電容器則會更多地吸收諧波。
因此存在這種可能,即,新、舊電容器工作在相同的母線上時會表現出運行狀況和壽命預期的很大差異,由於上述原因有可能新電容器將在更短的時間內損壞。
我們向市場提供的電力電容器是專門為用於補償系統中而開發的。電網條件已經發生急劇的變化,選擇正確的電容器技術越來越重要。電容器的使用壽命會受到如下因素的影響而縮短: -諧波負載 -較高的電網電壓 -高的環境溫度 我們配電系統中的諧波負載在持續增長。在可預知的將來,可能只有組合電抗類型的補償系統會適合使用。很多供電公司已經規定只能安裝帶電抗的補償系統。其它公司必須遵循他們的規定。如果一個用戶決定繼續使用無電抗的補償系統,他起碼應該選用更高額定電壓的電容器。這種電容器能夠耐受較高的諧波負載,但是不能避免諧振事故。
諧波的危害十分嚴重。諧波使電能的生產、傳輸和利用的效率降低,使電氣設備過熱、產生振動和雜訊,並使絕緣老化,使用壽命縮短,甚至發生故障或燒毀。諧波可引起電力系統局部並聯諧振或串聯諧振,使諧波含量放大,造成電容器等設備燒毀。諧波還會引起繼電保護和自動裝置誤動作,使電能計量出現混亂。對於電力系統外部,諧波對通信設備和電子設備會產生嚴重干擾。
“諧波”一詞起源於聲學。有關諧波的數學分析在18世紀和19世紀已經奠定了良好的基礎。傅里葉等人提出的諧波分析方法至今仍被廣泛應用。電力系統的諧波問題早在20世紀20年代和30年代就引起了人們的注意。當時在德國,由於使用靜止汞弧變流器而造成了電壓、電流波形的畸變。1945年J.C.Read發表的有關變流器諧波的論文是早期有關諧波研究的經典論文。到了50年代和60年代,由於高壓直流輸電技術的發展,發表了有關變流器引起電力系統諧波問題的大量論文。70年代以來,由於電力電子技術的飛速發展,各種電力電子裝置在電力系統、工業、交通及家庭中的應用日益廣泛,諧波所造成的危害也日趨嚴重。世界各國都對諧波問題予以充分和關注。國際上召開了多次有關諧波問題的學術會議,不少國家和國際學術組織都制定了限制電力系統諧波和用電設備諧波的標準和規定。
供電系統諧波的定義是對周期性非正弦電量進行傅立葉級數分解,除了得到與電網基波頻率相同的分量,還得到一系列大於電網基波頻率的分量,這部分電量稱為諧波。諧波頻率與基波頻率的比值(n=fn/f1)稱為諧波次數。電網中有時也存在非整數倍諧波,稱為非諧波(Non-harmonics)或分數諧波。諧波實際上是一種 干擾量,使電網受到“污染”。電工技術領域主要研究諧波的發生、傳輸、測量、危害及抑制,其頻率範圍一般 為2≤n≤40。
在工業和生活用電負載中,感性負載佔有很大的比例。非同步電動機、變壓器、熒光燈等都是典型的阻感負載。非同步電動機和變壓器所消耗的無功功率在電力系統所提供的無功功率中佔有很高的比例。電力系統中的電抗器和架空線等也消耗一些無功功率。阻感負載必須吸收無功功率才能正常工作,這是由其本身的性質所決定的。
電力電子裝置等非線性裝置也要消耗無功功率,特別是各種相控裝置。如相控整流器、相控交流功率調整電路和周波變流器,在工作時基波電流滯後於電網電壓,要消耗大量的無功功率。另外,這些裝置也會產生大量的諧波電流,諧波源都是要消耗無功功率的。二極體整流電路的基波電流相位和電網電壓相位大致相同,所以基本不消耗基波無功功率。但是它也產生大量的諧波電流,因此也產生一定的無功功率。
近30年來,電力電子裝置的應用日益廣泛,也使得電力電子裝置成為最大的諧波源。在各種電力電子裝置中,整流裝置所佔的比例最大。常用的整流電路幾乎都採用晶閘管相控整流電路或二極體整流電路,其中以三相橋式和單相橋式整流電路為最多。帶阻感負載的整流電路所產生的諧波污染和功率因數滯后已為人們所熟悉。直流側採用電容濾波的二極體整流電路也是嚴重的諧波污染源。這種電路輸入電流的基波分量相位與電源電壓相位大體相同,因而基波功率因數接近1。但其輸入電流的諧波分量卻很大,給電網造成嚴重污染,也使得總的功率因數很低。另外,採用相控方式的交流電力調整電路及周波變流器等電力電子裝置也會在輸入側產生大量的諧波電流。
(1)發電源質量不高產生諧波
發電機由於三相繞組在製作上很難做到絕對對稱,鐵心也很難做到絕對均勻一致和其他一些原因,發電源多少也會產生一些諧波,但一般來說很少。
(2)輸配電系統產生諧波
輸配電系統中主要是電力變壓器產生諧波,由於變壓器鐵心的飽和,磁化曲線的非線性,加上設計變壓器時考慮經濟性,其工作磁密選擇在磁化曲線的近飽和段上,這樣就使得磁化電流呈尖頂波形,因而含有奇次諧波。它的大小與磁路的結構形式、鐵心的飽和程度有關。鐵心的飽和程度越高,變壓器工作點偏離線性越遠,諧波電流也就越大,其中3次諧波電流可達額定電流0.5%。
(3)用電設備產生的諧波:
晶閘管整流設備。由於晶閘管整流在電力機車、鋁電解槽、充電裝置、開關電源等許多方面得到了越來越廣泛的應用,給電網造成了大量的諧波。我們知道,晶閘管整流裝置採用移相控制,從電網吸收的是缺角的正弦波,從而給電網留下的也是另一部分缺角的正弦波,顯然在留下部分中含有大量的諧波。如果整流裝置為單相整流電路,在接感性負載時則含有奇次諧波電流,其中3次諧波的含量可達基波的30%;接容性負載時則含有奇次諧波電壓,其諧波含量隨電容值的增大而增大。如果整流裝置為三相全控橋6脈整流器,變壓器原邊及供電線路含有5次及以上奇次諧波電流;如果是12脈衝整流器,也還有11次及以上奇次諧波電流。經統計表明:由整流裝置產生的諧波占所有諧波的近40%,這是最大的諧波源。
變頻裝置。變頻裝置常用於風機、水泵、電梯等設備中,由於採用了相位控制,諧波成份很複雜,除含有整數次諧波外,還含有分數次諧波,這類裝置的功率一般較大,隨著變頻調速的發展,對電網造成的諧波也越來越多。
電弧爐、電石爐。由於加熱原料時電爐的三相電極很難同時接觸到高低不平的爐料,使得燃燒不穩定,引起三相負荷不平衡,產生諧波電流,經變壓器的三角形連接線圈而注入電網。其中主要是2 7次的諧波,平均可達基波的8% 20%,最大可達45%。
氣體放電類電光源。熒光燈、高壓汞燈、高壓鈉燈與金屬鹵化物燈等屬於氣體放電類電光源。分析與測量這類電光源的伏安特性,可知其非線性十分嚴重,有的還含有負的伏安特性,它們會給電網造成奇次諧波電流。
家用電器。電視機、錄像機、計算機、調光燈具、調溫炊具等,因具有調壓整流裝置,會產生較深的奇次諧波。在洗衣機、電風扇、空調器等有繞組的設備中,因不平衡電流的變化也能使波形改變。這些家用電器雖然功率較小,但數量巨大,也是諧波的主要來源之一。
理想的公用電網所提供的電壓應該是單一而固定的頻率以及規定的電壓幅值。電力電子設備廣泛應用以前,人們對諧波及其危害就進行過一些研究,並有一定認識,但那時諧波污染還沒有引起足夠的重視。近三四十年來,各種電力電子裝置的迅速發展使得公用電網的諧波污染日趨嚴重,由諧波引起的各種故障和事故也不斷發生,諧波危害的嚴重性才引起人們高度的關注。諧波對公用電網和其他系統的危害大致有以下幾個方面。
(1)諧波使公用電網中的元件產生了附加的諧波損耗,降低了發電、輸電及用電設備的效率,大量的3次諧波流過中性線時會使線路過熱甚至發生火災。
(2)諧波影響各種電氣設備的正常工作。諧波對電機的影響除引起附加損耗外,還會產生機械振動、雜訊和過電壓,使變壓器局部嚴重過熱。諧波使電容器、電纜等設備過熱、絕緣老化、壽命縮短,以至損壞。
(3)諧波會引起公用電網中局部的並聯諧振和串聯諧振,從而使諧波放大,這就使上述(1)和(2)的危害大大增加,甚至引起嚴重事故。
(4)諧波會導致繼電保護和自動裝置的誤動作,並會使電氣測量儀錶計量不準確。
(5)諧波會對鄰近的通信系統產生干擾,輕者產生雜訊,降低通信質量;重者導致住處丟失,使通信系統無法正常工作。
諧波簡單地說,就是一定頻率的電壓或電流作用於非線性負載時,會產生不同於原頻率的其它頻率的正弦電壓或電流的現象。
紋波是指在直流電壓或電流中,疊加在直流穩定量上的交流分量。
它們雖然在概念上不是一回事,但它們之間有聯繫。如電源上附加的紋波在用電器上很容易產生各頻率的諧波;電源中各頻率諧波的存在無疑導致電源中紋波成分的增加。
除了在電路中我們所需要產生諧波的情況以外,它主要有以下主要危害:
1、使電網中發生諧振而造成過電流或過電壓而引發事故;
2、增加附加損耗,降低發電、輸電及用電設備的效率和設備利用率;
3、使電氣設備(如旋轉電機、電容器、變壓器等)運行不正常,加速絕緣老化,從而縮短它們的使用壽命;
4、使繼電保護、自動裝置、計算機系統及許多用電設備運轉不正常或不能正常動作或操作;
5、使測量和計量儀器、儀錶不能正確指示或計量;
6、干擾通信系統,降低信號的傳輸質量,破壞信號的正常傳遞,甚至損壞通信設備。
紋波的害處:
1、容易在用電器上產生諧波,而諧波會產生較多的危害;
2、降低了電源的效率;
3、較強的紋波會造成浪涌電壓或電流的產生,導致燒毀用電器;
4、會幹擾數字電路的邏輯關係,影響其正常工作;
5、會帶來噪音干擾,使圖像設備、音響設備不能正常工作。
總之,它們在我們不需要的地方出現都是有害的,需要我們避免的。對於如何抑制和去除諧波和紋波的方式方法有很多,但想完全消除,似乎是很難辦到的,我們只有將其控制在一個允許的範圍之內,不對環境和設備產生影響就算達到了我們的目的。
電力污染及電力品質惡化主要表現在以下方面:電壓波動、浪涌衝擊、諧 波、三相不平衡等。
1.電源 污染的危害
電源污染會對用電設備造成嚴重危害,主要有:
干擾通訊設備、計算機系統等電子設備的正常工作,造成數據丟失或死機。
影響無線電發射系統、雷達系統、核磁共振等設備的工作性能, 造成雜訊干擾和圖像紊亂。
引起電氣自動裝置誤動作,甚至發生嚴重事故。
使電氣設備過熱,振動和雜訊加大,加速絕緣老化,使用壽命縮短,甚至發生故障或燒毀。
造成燈光亮度的波動(閃變),影響工作效益。
導致供電系統功率損耗增加。
電壓波動及閃變
電壓波動是指多個正弦波的峰值,在一段時間內超過(低於)標準電壓值,大約從半周波到幾百個周波,即從10MS到2.5秒, 包括過壓波動和欠壓波動。普通避雷器和過電壓保護器,完全不能消除過壓波動,因為它們是用來消除瞬態脈衝的。普通避雷器在限壓動作時有相當大的電阻值,考慮到其額定熱容量(焦爾),這些裝置很容易被燒毀,而無法提供以後的保護功能。這種情況往往很容易忽視掉,這是導致計算機、控制系統和敏感設備故障或停機的主要原因。
另一個相反的情況是欠壓波動,它是指多個正弦波的峰值,在一段時間內低於標準電壓值,或如通常所說:晃動或降落。長時間的低電壓情況可能是由供電公司造成或由於用戶過負載造成,這種情況可能是事故現象或計劃安排。更為嚴重的是失壓,它大多是由於配電網內重負載的分合造成,例如大型電動機、中央空調系統、電弧爐等的啟停以及開關電弧、保險絲燒斷、斷路器跳閘等,這些都是通常導致電壓畸變的原因。
大型用電設備的頻繁啟動導致電壓的周期性波動,如電焊機、衝壓機、吊機、電梯等,這些設備需要短時衝擊功率,主要是無功功率。電壓波動導致設備功率不穩,產品質量下降;燈光的閃變引致眼睛疲勞,降低工作效率。
浪涌衝擊
浪涌衝擊是指系統發生短時過(低)電壓,即時間不超過1毫秒的電壓瞬時脈衝,這種脈衝可以是正極性或負極性,可以具有連串或振蕩性質。它們通常也被叫作:尖峰、缺口、干擾、毛刺或突變。
電網中的浪涌衝擊既可由電網內部大型設備(電機、電容器等)的投切或大型晶閘管的開斷引起,也可由外部雷電波的侵入造成。浪涌衝擊容易引起電子設備部件損壞,引起電氣設備絕緣擊穿;同時也容易導致計算機等設備數據出錯或死機。
諧波
線性負載,例如純電阻負載,其工作電流的波形與輸入電壓的正弦波形完全相同,非線性負載,例如斬波直流負載,其工作電流是非正弦波形。傳統的線性負載的電流/電壓只含有基波(50Hz),沒有或只有極小的諧波成分,而非線性負載會在電力系統中產生可觀的諧波。
諧波與電力系統中基波疊加,造成波形的畸變,畸變的程度取決於諧波電流的頻率和幅值。非線性負載產生陡峭的脈衝型電流,而不是平滑的正弦波電流,這種脈衝中的諧波電流引起電網電壓畸變,形成諧波分量,進而導致與電網相聯的其它負載產生更多的諧波電流。
計算機是此類非線性負載之一,象絕大多數辦公室電子設備一樣,計算機裝有一個二極體/電容型的供電電源,這類供電電源僅在交流正弦波電壓的峰值處產生電流,因此產生大量的三次諧波電流(150Hz)。其它產生諧波電流的設備主要有:電動機變頻調速器,固態加熱器,和其他一些產生非正弦波變化電流的設備。
熒光燈照明系統也是一個重要的諧波源,在普通的電磁整流器燈光電路中,三次諧波的典型值約為基波(50Hz)值的13%-20%。而在電子整流器燈光電路中,諧波分量甚至高達80%。
非線性負載所產生的諧波電流會影響電力系統的多個工作環節,包括變壓器,中性線,還有電動機,發電機和電容器等。諧波電流會導致變壓器,電動機和備用發電機的運行溫度(K參數)嚴重升高。中性線上的過電流(由諧波和不平衡引起)不僅會使導線溫度升高,造成絕緣損壞,而且會在三相變壓器線圈中產生環流,導致變壓器過熱。無功補償電容器會因電網電壓諧波畸變而產生過熱,諧波將導致嚴重過流;
另外,電容器還會與電力系統中的電感性元件形成諧振電路,這將導致電容器兩端的電壓明顯升高,引致嚴重故障。照明裝置的啟輝電容器對於由高頻電流引起的過熱也是十分敏感的,啟輝電容器的頻繁損壞顯示了電網中存在諧波的影響。諧波還會引起配電線路的傳輸效率下降,損耗增大,並干擾電力載波通訊系統的工作,如電能管理系統(EMS)和時鐘系統。而且,諧波還會使電力測量表計,有功需量表和電度表的計量誤差增大。
三相不平衡
三相不平衡會在中性線上產生過電流(由諧波和不平衡引起)不僅會使導線溫度升高,甚至引發嚴重火災事故等。
電網中三相間的不平衡電流是普遍存在的,在城市民用電網及農用電網中由於大量單相負荷的存在,三相間的電流不平衡現象尤為嚴重。對於三相不平衡電流,除了盡量合理地分配負荷之外幾乎沒有什麼行之有效的解決辦法。正因為找不到解決問題的有效辦法,因此反而不被人們所重視,也很少有人進行研究。
電網中的不平衡電流會增加線路及變壓器的銅損,增加變壓器的鐵損,降低變壓器的出力甚至會影響變壓器的安全運行,會造成三相電壓不平衡因而降低供電質量
,甚至會影響電能表的精度而造成計量損失。
理論研究證明:在輸出同樣功率的情況下,三相電流平衡時變壓器及線路的銅損最小,也就是說:三相不平衡現象增加了變壓器及線路的銅損。
不平衡電流對系統銅損的影響
設某系統的三相線路及變壓器繞組的總電阻為R。如果三相電流平衡,IA=100A,IB=100A,IC=100A,則總銅損=1002R+1002R+1002R=30000R。
如果三相電流不平衡,IA=50A,IB=100A,IC=150A,則總銅損=502R+1002R+1502R=35000R,比平衡狀態的銅損增加了17%。
在更為嚴重的狀態下,如果IA=0A,IB=150A,IC=150A,則總銅損=1502R+1502R=45000R,比平衡狀態的銅損增加了50%。
在最嚴重的狀態下,如果IA=0A,IB=0A,IC=300A,則總銅損=3002R=90000R,比平衡狀態的銅損增加了3倍。
不平衡電流對變壓器的影響
現有的10/0.4KV的低壓配電變壓器多為Yyn0接法三相三柱鐵心的變壓器。這種類型的變壓器,當二次側負荷不平衡且有零線電流時,零線電流即為零序電流,而在
一次側由於無中點引出線因此零序電流無法流通,故零序電流不能安匝平衡,對鐵心而言,有一個激磁零序電流,它受零序激磁阻抗控制,根據磁路的設計,這一零序
激磁阻抗較大,零序電流使相電壓的對稱受到影響,中性點會偏移。由計算得知,當零線電流為額定電流的25%時,中性點移位約為額定電壓的7%。國家標準GB50052-
95第6.08條規定: “當選用Yyn0結線組別的三相變壓器,其由單相不平衡負荷引起的電流不得超過低壓繞組額定電流的25%,且其中一相的電流在滿載時不得超過額定電
流值。”由於上述規定,限制了Yyn0結線配電變壓器接用單相負荷的容量,也影響了變壓器設備能力的充分利用。
並且,對三相三柱的磁路而言,零序磁通不能在磁路內成迴路,必須在油箱壁及緊固件內形成迴路,而油箱壁及緊固件內的磁通會產生較大的渦流損耗,因而使變
壓器的鐵損增加。當零序電流過大導致零序磁通過大時,由於中性點漂移過大會引起某些相電壓過高而導致鐵心磁飽和,使鐵損急劇增加,加上緊固件過熱等因素,可
能會發生任何一相電流均未過載而變壓器卻因局部過熱而損壞的事故。
由於Yyn0結線組的配電變壓器與的零序激磁阻抗較大,因此零線電流會造成較大的電壓變化,形成比較嚴重的三相電壓不平衡現象,不但影響單相用戶,對三相用
戶的影響更大。
三相負荷不平衡的危害
對配電變壓器的影響
(1)三相負荷不平衡將增加變壓器的損耗:
變壓器的損耗包括空載損耗和負荷損耗。正常情況下變壓器運行電壓基本不變,即空載損耗是一個恆量。而負荷損耗則隨變壓器運行負荷的變化而變化,且與負荷電流的平方成正比。當三相負荷不平衡運行時,變壓器的負荷損耗可看成三隻單相變壓器的負荷損耗之和。
從數學定理中我們知道:假設a、b、c 3個數都大於或等於零,那麼a+b+c≥33√abc 。
當a=b=c時,代數和a+b+c取得最小值:a+b+c=33√abc 。
因此我們可以假設變壓器的三相損耗分別為:Qa=Ia2 R、Qb= Ib2 R 、Qc =Ic2 R,式中Ia、Ib、Ic分別為變壓器二次負荷相電流,R為變壓器的相電阻。則變壓器的損耗表達式如下:
Qa+Qb+Qc≥33√〔(Ia2 R)(Ib2 R)(Ic2 R)〕
由此可知,變壓器的在負荷不變的情況下,當Ia=Ib=Ic時,即三相負荷達到平衡時,變壓器的損耗最小。
則變壓器損耗:
當變壓器三相平衡運行時,即Ia=Ib=Ic=I時,Qa+Qb+Qc=3I2R;
當變壓器運行在最大不平衡時,即Ia=3I,Ib=Ic=0時,Qa=(3I)2R=9I2R=3(3I2R);
即最大不平衡時的變損是平衡時的3倍。
(2)三相負荷不平衡可能造成燒毀變壓器的嚴重後果:
上述不平衡時重負荷相電流過大(增為3倍),超載過多,可能造成繞組和變壓器油的過熱。繞組過熱,絕緣老化加快;變壓器油過熱,引起油質劣化,迅速降低變壓器的絕緣性能,減少變壓器壽命(溫度每升高8℃,使用年限將減少一半),甚至燒毀繞組。
(3)三相負荷不平衡運行會造成變壓器零序電流過大,局部金屬件溫升增高:
在三相負荷不平衡運行下的變壓器,必然會產生零序電流,而變壓器內部零序電流的存在,會在鐵芯中產生零序磁通,這些零序磁通就會在變壓器的油箱壁或其他金屬構件中構成迴路。但配電變壓器設計時不考慮這些金屬構件為導磁部件,則由此引起的磁滯和渦流損耗使這些部件發熱,致使變壓器局部金屬件溫度異常升高,嚴重時將導致變壓器運行事故。
3.2 對高壓線路的影響
(1)增加高壓線路損耗:
低壓側三相負荷平衡時,6~10k V高壓側也平衡,設高壓線路每相的電流為I,其功率損耗為: ΔP1 = 3I2R
低壓電網三相負荷不平衡將反映到高壓側,在最大不平衡時,高壓對應相為1.5I,另外兩相都為0.75 I,功率損耗為:
ΔP2 = 2(0.75I)2R+(1.5I)2R = 3.375I2R =1.125(3I2R);
即高壓線路上電能損耗增加12.5%。
(2)增加高壓線路跳閘次數、降低開關設備使用壽命:
我們知道高壓線路過流故障占相當比例,其原因是電流過大。低壓電網三相負荷不平衡可能引起高壓某相電流過大,從而引起高壓線路過流跳閘停電,引發大面積停電事故,同時變電站的開關設備頻繁跳閘將降低使用壽命。
3.3 對配電屏和低壓線路的影響
(1)三相負荷不平衡將增加線路損耗:
三相四線制供電線路,把負荷平均分配到三相上,設每相的電流為I,中性線電流為零,其功率損耗為: ΔP1 = 3I2R
在最大不平衡時,即某相為3I,另外兩相為零,中性線電流也為3I,功率損耗為:
ΔP2 = 2(3I)2R = 18I2R = 6(3I2R);
即最大不平衡時的電能損耗是平衡時的6倍,換句話說,若最大不平衡時每月損失1200 kWh,則平衡時只損失200 kWh,由此可知調整三相負荷的降損潛力。
(2)三相負荷不平衡可能造成燒斷線路、燒毀開關設備的嚴重後果:
上述不平衡時重負荷相電流過大(增為3倍),超載過多。由於發熱量Q=0.24I2Rt,電流增為3倍,則發熱量增為9倍,可能造成該相導線溫度直線上升,以致燒斷。且由於中性線導線截面一般應是相線截面的50%,但在選擇時,有的往往偏小,加上接頭質量不好,使導線電阻增大。中性線燒斷的幾率更高。
同理在配電屏上,造成開關重負荷相燒壞、接觸器重負荷相燒壞,因而整機損壞等嚴重後果。
3.4 對供電企業的影響
供電企業直管到戶,低壓電網損耗大,將降低供電企業的經濟效益,甚至造成供電企業虧損經營。農電工承包台區線損,線損高農電工獎金被扣發,甚至連工資也得不到,必然影響農電工情緒,輕則工作消極,重則為了得到錢違法犯罪。
變壓器燒毀、線路燒斷、開關設備燒壞,一方面增大供電企業的供電成本,另一方面停電檢修、購貨更換造成長時間停電,少供電量,既降低供電企業的經濟效益,又影響供電企業的聲譽。
3.5 對用戶的影響
三相負荷不平衡,一相或兩相畸重,必將增大線路中的電壓降,降低電能質量,影響用戶的電器使用。
變壓器燒毀、線路燒斷、開關設備燒壞,影響用戶供電,輕則帶來不便,重則造成較大的經濟損失,如停電造成養殖的動植物死亡,或不能按合同供貨被懲罰等。中性線燒斷還可能造成用戶大量低壓電器被燒毀的事故。
對於現有供電網路或待建電網中的電力污染情況,要進行仔細分析,通常解決的方法有兩個:一是局部重組電網結構,分離或隔離產生電力污染的設備;二是使用電源凈化濾波設備進行治理,通常電壓諧波是由電流諧波產生的,有效地抑制電流諧波就會使電壓畸變達到要求的範圍。國內外很多單位已開始重視電源污染的治理, 投資安裝電源凈化濾波裝置, 取得了提高電源品質和節能的雙重效果。
為解決電力電子裝置和其他諧波源的諧波污染問題,基本思路有兩條:一條是裝設諧波補償裝置來補償諧波,這對各種諧波源都是適用的;另一條是對電力電子裝置本身進行改造,使期不產生諧波,且功率因數可控制為1,這當然只適用於作為主要諧波源的電力電子裝置。
諧波抑制主要有以下幾種方法:
1)串聯電抗器
2)有源濾波補償
3)無源濾波補償
4)增加整流設備的相數
5)安裝各種突波吸收保護裝置,如避雷器等
裝設諧波補償裝置的傳統方法就是採用LC調諧濾波器。這種方法既可補償諧波,又可補償無功功率,而且結構簡單,一直被廣泛使用。這種方法的主要缺點是補償特性受電網阻抗和運行狀態影響,易和 系統發生並聯諧振,導致諧波放大,使LC濾波器過載甚至燒毀。此外,它只能補償固定頻率的諧波,補償效果也不甚理想。
21世紀初期,無源濾波補償是實際應用最多、效果較好、價格較低的解決方案,它包括三種基本形式:串聯濾波、並聯濾波和低通濾波(串並混合)。其中串聯濾波主要適用於三次諧波的治理;低通濾波主要適用於高次諧波的治理;並聯濾波是一種綜合裝置,它可濾除多次諧波,同時提供系統的 無功功率,是應用最廣泛的電源凈化濾波裝置。
隨著電力電子技術的發展,有源濾波補償技術日益成熟,並得到了廣泛應用。較傳統的無源濾波補償系統,它具有功能多,適應性好及響應速度快等優點,隨著價格的不斷下降,應用將日益普遍。有源濾波補償系統在很多重要場所應用效果非常好。
人們對有功功率的理解非常容易,而要深刻認識無功功率卻並不是輕而易舉的。在正弦電路中,無功功率的概念是清楚的,而在含有諧波時,至今尚無獲得公認的無功功率定義。但是,對無功功率這一概念的重要性,對無功補償重要性的認識,卻是一致的。無功補償應包含對基波無功功率補償和對諧波無功功率的補償。
無功功率對 供電系統和負荷的運行都是十分重要的。電力系統網路元件的阻抗主要是電感性的。因此,粗略地說,為了輸送有功功率,就要求送電端和受電端的電壓有一相位差,這在相當寬的範圍內可以實現;而為了輸送無功功率,則要求兩端電壓有一幅值差,這隻能在很窄的範圍內實現。不僅大多數網路元件消耗無功功率,大多數負載也需要消耗無功功率。網路元件和負載所需要的無功功率必須從網路中 某個地方獲得。顯然,這些無功功率如果都要由發電機提供並經過長距離傳送是不合理的,通常也是不可能的。合理的方法應是在需要消耗無功功率的地方產生無功功率,這就是無功補償。
無功補償的作用主要有以下幾點:
(1)提高供用電系統及負載的功率因數,降低設備容量,減少功率損耗。
(2)穩定受電端及電網的 電壓,提高供電質量。在長距離輸電線中合適的地點設置 動態無功補償裝置還可以改善輸電系統的穩定性,提高輸電能力。
(3)在電氣化鐵道等三相負載 不平衡的場合,通過適當的無功襝可以平衡三相的有功及無功負載。