瑞利-金斯公式

瑞利-金斯公式

瑞利-金斯公式,是根據經典電動力學和統計力學導出的熱平衡輻射能量分佈公式。瑞利(1900)和金斯,J.H.(1905)根據經典統計理論,研究密封空腔中的電磁場,得到了空腔輻射的能量密度w(v,T)按頻率v分佈的瑞利-金斯公式

公式


式中k是玻爾茲曼常數,с是真空中光速,T是熱力學溫度。

公式推導


瑞利和金斯求出在頻率間隔內本徵振動的個數為
其中因子2是由於每一頻率v對應於偏振面互相垂直的兩個波的緣故。
根據經典能量均分定理,每個振動自由度的平均能量為kT,即的平均動能和的平均勢能,
當然每一個平面波也具有kT的平均能量。
所以將式(2)乘以kT,並用體積V除,就得到頻率之間、單位體積的能量表示式,即式(1)。
也可將式(1)換為按波長的分佈公式。

遇到困難


瑞利-金斯公式
瑞利-金斯公式
把式(3)表示能量密度同波長λ的關係曲線及實驗曲線畫在圖中,可以看出,瑞利-金斯公式在長波或高溫情況下,同實驗結果相符,但在短波範圍,能量密度則迅速地單調上升,同實驗結果矛盾。其實,對頻率從0到∞積分式(1),就得到包括所有頻率的能量密度為無窮大的結論,就是說空腔內的平衡輻射場只有當能量密度無窮大時才開始建立,這顯然是荒謬的。
瑞利-金斯公式的這一嚴重缺陷,在物理學史上稱作"紫外災難",它深刻揭露了經典物理的困難,從而對輻射理論和近代物理學的發展起了重要的推動作用。