工業計算機

用於各種工業設備的控制系統

電子計算機,亦稱電腦。

基本介紹


電子計算機,亦稱 電腦,計算機是一種利用數字電子技術,根據一系列指令指示其自動執行任意算術或邏輯操作串列的設備。通用計算機因有能遵循被稱為“程序”的一般操作集的能力而使得它們能夠執行極其廣泛的任務。
計算機被用作各種工業和消費設備的控制系統。這包括簡單的特定用途設備(如微波爐和遙控器)、工業設備(如工業機器人和計算機輔助設計),以及通用設備(如個人計算機和智能手機之類的移動設備)等。儘管計算機種類繁多,但根據圖靈機理論,一部具有最基本功能的計算機,應當能夠完成任何其它計算機能做的事情。因此,理論上從智能手機到超級計算機都應該可以完成同樣的作業(不考慮時間和存儲因素)。由於科技的飛速進步,下一代計算機總是在性能上能夠顯著地超過其前一代,這一現象有時被稱作“摩爾定律”。通過網際網路,計算機互相連接,極大地提高了信息交換速度,反過來推動了科技的發展。在21世紀的現在,計算機的應用已經涉及到方方面面,各行各業了。
自古以來,簡單的手動設備——就像算盤——幫助人們進行計算。在工業革命初期,各式各樣的機械的出現,其初衷都是為了自動完成冗長而乏味的任務,例如織機的編織圖案。更複雜的機器在20世紀初出現,通過模擬電路進行複雜特定的計算。第一台數字電子計算機出現於二戰期間。自那時以來,計算機的速度,功耗和多功能性不斷增加。在現代,機械計算機的應用已經完全被電子計算機所取代。
計算機在組成上形式不一,早期計算機的體積足有一間房屋的大小,而今天某些嵌入式計算機可能比一副撲克牌還小。當然,即使在今天依然有大量體積龐大的巨型計算機為特別的科學計算或面向大型組織的事務處理需求服務。比較小的,為個人應用而設計的稱為微型計算機(Personal Computer,PC),在中國地區簡稱為“微機”。我們今天在日常使用“計算機”一詞時通常也是指此,不過現在計算機最為普遍的應用形式卻是嵌入式,嵌入式計算機通常相對簡單、體積小,並被用來控制其它設備——無論是飛機、工業機器人還是數字相機。
同計算機相關的技術研究叫計算機科學,而“計算機技術”指的是將計算機科學的成果應用於工程實踐所派生的諸多技術性和經驗性成果的總合。“計算機技術”與“計算機科學”是兩個相關而又不同的概念,它們的不同在於前者偏重於實踐而後者偏重於理論。至於由數據為核心的研究則稱為信息技術。
傳統上,現代計算機包括至少一個處理單元(通常是中央處理器(CPU))和某種形式的存儲器。處理組件執行算術和邏輯運算,並且排序和控制單元可以響應於存儲的信息改變操作的順序。外圍設備包括輸入設備(鍵盤,滑鼠,操縱桿等)、輸出設備(顯示器屏幕,印表機等)以及執行兩種功能(例如觸摸屏)的輸入/輸出設備。外圍設備允許從外部來源檢索信息,並使操作結果得以保存和檢索。

歷史介紹


主條目:計算機硬體歷史
本來,計算機的英文原詞“computer”是指從事數據計算的人。而他們往往都需要藉助某些機械計算設備或模擬計算機。
這些早期計算設備的祖先包括有算盤,以及可以追溯到公元前87年的被古希臘人用於計算行星移動的安提基特拉機械。隨著中世紀末期歐洲數學與工程學的再次繁榮,1623年德國博學家Wilhelm Schickard率先研製出了歐洲第一部計算設備,這是一個能進行六位以內數加減法,並能通過鈴聲輸出答案的“計算鍾”。使用轉動齒輪來進行操作。
1642年法國數學家布萊士·帕斯卡在英國數學家William Oughtred所製作的“計算尺”的基礎上,將其加以改進,使能進行八位計算。還賣出了許多製品,成為當時一種時髦的商品。
1801年,法國人約瑟夫·瑪麗·雅卡爾對織布機的設計進行改進,使用一系列打孔的紙卡片來作為編織複雜圖案的程序。儘管這種被稱作“雅卡爾織布機”的機器並不被認為是一部真正的計算機,但是其可編程性質使之被視為現代計算機發展過程中重要的一步。
查爾斯·巴貝奇於1820年構想和設計了第一部完全可程序化計算機。但由於技術條件、經費限制,以及無法忍耐對設計不停的修補,這部計算機在他有生之年始終未能問世。約到19世紀晚期,許多後來被證明對計算機科學有著重大意義的技術相繼出現,包括打孔卡片以及真空管。德裔美籍統計學家赫爾曼·何樂禮設計了一部製表用的機器,其中便應用打孔卡片來進行大規模自動數據處理。
在20世紀前半葉,為了迎合科學計算的需要,許多專門用途的、複雜度不斷增長的模擬計算機被研製出來。這些計算機都是用它們所針對的特定問題的機械或電子模型作為計算基礎。1930-1940年代,計算機的性能逐漸強大並且通用性得到提升,現代計算機的關鍵特色被不斷地加入進來。
1937年,年僅21歲的麻省理工學院研究生克勞德·香農發表了他的偉大論文《對繼電器和開關電路中的符號分析》,文中首次提及數字電子技術的應用。他向人們展示了如何使用開關來實現邏輯和數學運算。此後,他通過研究萬尼瓦爾·布希的微分模擬器進一步鞏固了他的想法。這是一個標誌著二進位電子電路設計和邏輯門應用開始的重要時刻,而這些關鍵思想誕生的先驅,應當包括:阿爾蒙·斯特羅格,他為一個含有邏輯門電路的設備申請了專利;尼古拉·特斯拉,他早在1898年就曾申請含有邏輯門的電路設備;李·德富雷斯特,於1907年他用真空管代替了繼電器
沿著這樣一條上下求索的漫漫長途去定義所謂的“第一部電子計算機”可謂相當困難。1941年5月12日,德國工程師康拉德·楚澤完成了他的圖靈完全機電一體計算機“Z3”,這是第一部具有自動二進位數學計算特色以及可行的程序化功能的計算機,但還不是“電子”計算機。此外,其他值得注意的成就主要有:
1941年夏天誕生的阿塔納索夫-貝瑞計算機是世界上第一部電子計算機,它使用了真空管計算器,二進位數值,可復用內存;在英國於1943年被展示的神秘的巨像計算機(Colossus computer),儘管程序化能力極為有限,但是它使人們確信使用真空管既值得信賴,又能實現電氣化的再編程;哈佛大學的馬克一號;以及基於二進位的ENIAC,全名為電子數值積分計算器,這是第一部通用意圖的計算機,但由於其結構設計不夠彈性化,導致對它的每一次再編程都要重新連接電子線路。
1940年代的第二次世界大戰中,為訓練轟炸機飛行員,美國海軍曾向麻省理工學院探詢,是否能夠開發出一款可以控制飛行模擬器的計算器。軍方當初的設想只是希望經由該計算器將飛行員模擬操作產生的數據即時反映到儀錶盤上。和以前的訓練系統林克訓練機不同,軍方計劃系統能儘可能真實地根據空氣動力學模型進行模擬,以使其能適用於各種不同類型的飛機。於是麻省理工創造了旋風工程,其製造出了世界上第一台能夠即時處理數據的旋風計算機,併發明了磁芯存儲設備。這為個人計算機的發展做出了歷史性的貢獻。
開發埃尼阿克的小組針對其缺陷又進一步改善了設計,並最終呈現出今天我們所熟知的馮·諾伊曼結構(程序存儲體系結構)。這個體系是當今所有計算機的基礎。 20世紀40年代中晚期,大批基於此一體系的計算機開始研製,其中以英國最早。儘管第一部研製完成並投入運轉的是小規模實驗機(Small-Scale Experimental Machine,SSEM),但真正被開發出來的實用機很可能是延遲存儲電子自動計算器(EDSAC)。
在整個1950年代,真空管計算機居於統治地位。1958年9月12日在後來英特爾的創始人羅伯特·諾伊斯的領導下,發明了集成電路。不久又推出了微處理器。1959年到1964年間設計的計算器一般稱為第二代計算器。
到了1960年代,晶體管計算機將其取而代之。晶體管體積更小,速度更快,價格更加低廉,性能更加可靠,這使得它們可以商品化生產。 1964年到1972年的計算器一般被稱為第三代計算器。大量使用積體電路,典型的機型是IBM360系列。
到了1970年代,積體電路技術的引入大大地降低了計算機生產成本,計算機也從此開始走向千家萬戶。1972年以後的計算器習慣上被稱為第四代計算器。基於大規模積體電路,及後來的超大規模積體電路。Intel 4004是美國英特爾公司(Intel) 推出的第1款微處理器,也是全球第一款微處理器;1971年11月15日發布。1972年4月1日,INTEL推出8008微處理器。1976年,史蒂夫·喬布斯和斯蒂夫·沃茲尼亞克創辦蘋果計算器公司。並推出其Apple I計算器。1977年5月Apple II型計算器發布。1979年6月1日INTEL,發布了8位的8088微處理器。
1982年,微計算機開始普及,大量進入學校和家庭。1982年1月Commodore 64計算器發布,價格595美元。
1982年2月Intel 80286發布。時鐘頻率提高到20MHz,並增加了保護模式,可訪問640KB存儲器。支持1MB以上的虛擬內存。每秒運行270萬條指令,集成了134000個晶體管。
1990年11月,微軟發布第一代MPC(Multimedia PC,多媒體個人計算機標準):處理器至少為80286/12MHz(後來增加到80386SX/16MHz),有光碟驅動器,傳輸率不少於150 KB/sec。
1994年10月10日Intel發布75MHzPentium處理器。1995年11月1日,Pentium Pro發布。主頻可達200MHz,每秒鐘完成4.4億條指令,集成了550萬個晶體管。1997年1月8日Intel發布Pentium MMX,對遊戲和多媒體功能進行了增強。
此後計算器的變化日新月異,1965年發表的摩爾定律不斷被應證,預測在未來10—15年仍依然適用。

主要原理


儘管計算機技術自20世紀40年代第一部電子通用計算機誕生以來以來有了令人目眩的飛速發展,但是今天計算機仍然基本上採用的是存儲程序結構,即馮·諾伊曼結構。這個結構實現了實用化的通用計算機。
存儲程序結構將一部計算機描述成四個主要部分:算術邏輯單元、控制電路、存儲器及輸入輸出設備。這些部件通過一組一組的排線連接(特別地,當一組線被用於多種不同意圖的數據傳輸時又被稱為匯流排),並且由一個時鐘來驅動(當然某些其他事件也可能驅動控制電路)。
概念上講,一部計算機的存儲器可以被視為一組“細胞”單元。每一個“細胞”都有一個編號,稱為地址;又都可以存儲一個較小的定長信息。這個信息既可以是指令(告訴計算機去做什麼),也可以是數據(指令的處理對象)。原則上,每一個“細胞”都是可以存儲二者之任一的。
算術邏輯單元(ALU)可以被稱作計算機的大腦。它可以做兩類運算:第一類是算術運算,比如對兩個數字進行加減法。算術運算部件的功能在ALU中是十分有限的,事實上,一些ALU根本不支持電路級的乘法和除法運算(由是用戶只能通過編程進行乘除法運算)。第二類是比較運算,即給定兩個數, ALU對其進行比較以確定哪個更大一些。
輸入輸出系統是計算機從外部世界接收信息和向外部世界反饋運算結果的手段。對於一部標準的個人計算機,輸入設備主要有鍵盤和滑鼠,輸出設備則是顯示器、印表機以及其他許多後文將要討論的可連接到計算機上的I/O設備。
控制系統將以上計算機各部分聯繫起來。它的功能是從存儲器和輸入輸出設備中讀取指令和數據,對指令進行解碼,並向ALU交付匹配指令要求的正確輸入,告知ALU對這些數據做哪些運算並將結果數據返回到何處。控制系統中一個重要組件就是一個用來保持跟蹤當前指令所在地址的計數器。通常這個計數器隨著指令的執行而累加,但有時如果指令指示進行跳轉則不依此規則。
20世紀80年代以來ALU和控制單元(二者合稱中央處理器)逐漸被集成到一塊集成電路上,稱作微處理器。這類計算機的工作模式十分直觀:在一個時鐘周期內,計算機先從存儲器中獲取指令和數據,然後執行指令,存儲數據,再獲取下一條指令。這個過程被反覆執行,直至得到一個終止指令。
由控制器解釋,運算器執行的指令集是一個精心定義的數目十分有限的簡單指令集合。一般可以分為四類:1)、數據移動(如:將一個數值從存儲單元A拷貝到存儲單元B)2)、數邏運算(如:計算存儲單元A與存儲單元B之和,結果返回存儲單元C)3)、條件驗證(如:如果存儲單元A內數值為100,則下一條指令地址為存儲單元F)4)、指令串列改易(如:下一條指令地址為存儲單元F)
指令如同數據一樣在計算機內部是以二進位來表示的。比如說,10110000就是一條Intelx86系列微處理器的拷貝指令代碼。某一個計算機所支持的指令集就是該計算機的機器語言。因此,使用流行的機器語言將會使既成軟體在一部新計算機上運行得更加容易。所以對於那些機型商業化軟體開發的人來說,它們通常只會關注一種或幾種不同的機器語言。
更加強大的小型計算機,大型計算機和伺服器可能會與上述計算機有所不同。它們通常將任務分擔給不同的CPU來執行。今天,微處理器和多核個人計算機也在朝這個方向發展。
超級計算機通常有著與基本的存儲程序計算機顯著區別的體系結構。它們通常有著數以千計的CPU,不過這些設計似乎只對特定任務有用。在各種計算機中,還有一些微控制器採用令程序和數據分離的哈佛架構(Harvard architecture)。

電路實現


以上所說的這些概念性設計的物理實現是多種多樣的。如同我們前述所及,一部存儲過程式計算機既可以是巴比奇的機械式的,也可以是基於數字電子的。但是,數字電路可以通過諸如繼電器之類的電子控制開關來實現使用2進位數的算術和邏輯運算。香農的論文正是向我們展示了如何排列繼電器來組成能夠實現簡單布爾運算的邏輯門。其他一些學者很快指出使用真空管可以代替繼電器電路。真空管最初被用作無線電電路中的放大器,之後便開始被越來越多地用作數字電子電路中的快速開關。當電子管的一個針腳被通電后,電流就可以在另外兩端間自由通過。
通過邏輯門的排列組合我們可以設計完成很多複雜的任務。舉例而言,加法器就是其中之一。該器件在電子領域實現了兩個數相加並將結果保存下來—在計算機科學中這樣一個通過一組運算來實現某個特定意圖的方法被稱做一個演演算法。最終,人們通過數量可觀的邏輯門電路組裝成功了完整的ALU和控制器。說它數量可觀,只需看一下CSIRAC這部可能是最小的實用化電子管計算機。該機含有2000個電子管,其中還有不少是雙用器件,也即是說總計合有2000到4000個邏輯器件。
真空管對於製造規模龐大的門電路明顯力不從心。昂貴,不穩(尤其是數量多時),臃腫,能耗高,並且速度也不夠快—儘管遠超機械開關電路。這一切導致20世紀60年代它們被晶體管取代。後者體積更小,易於操作,可靠性高,更省能耗,同時成本也更低。
20世紀60年代后,晶體管開始逐漸為將大量晶體管、其他各種電器組件和連接導線安置在一片硅板上的集成電路所取代。 70年代,ALU和控制器作為組成CPU的兩大部分,開始被集成到一塊晶元上,並稱為“微處理器”。沿著集成電路的發展史,可以看到一片晶元上所集成器件的數量有了飛速增長。第一塊集成電路只不過包含幾十個部件,而到了2015年,一塊Intel Core i7處理器上的晶體管數目高達十九億之巨。
無論是電子管,晶體管還是集成電路,它們都可以通過使用一種觸發器設計機制來用作存儲程序體系結構中的“存儲”部件。而事實上觸發器的確被用作小規模的超高速存儲。但是,幾乎沒有任何計算機設計使用觸發器來進行大規模數據存儲。最早的計算機是使用Williams電子管向一個電視屏或若干條水銀延遲線(聲波通過這種線時的走行速度極為緩慢足夠被認為是“存儲”在了上面)發射電子束然後再來讀取的方式來存儲數據的。當然,這些儘管有效卻不怎麼優雅的方法最終還是被磁性存儲取而代之。比如說磁芯存儲器,代表信息的電流可在其中的鐵質材料內製造恆久的弱磁場,當這個磁場再被讀出時就實現了數據恢復。動態隨機存儲器亦被發明出來。它是一個包含大量電容的集成電路,而這些電容器件正是負責存儲數據電荷—電荷的強度則被定義為數據的值。

輸入輸出設備


輸入輸出設備(I/O)是對將外部世界信息發送給計算機的設備和將處理結果返回給外部世界的設備的總稱。這些返回結果可能是作為用戶能夠視覺上體驗的,或是作為該計算機所控制的其他設備的輸入:對於一部機器人,控制計算機的輸出基本上就是這部機器人本身,如做出各種行為。
第一代計算機的輸入輸出設備種類非常有限。通常的輸入用設備是打孔卡片的讀卡機,用來將指令和數據導入內存;而用於存儲結果的輸出設備則一般是磁帶。隨著科技的進步,輸入輸出設備的豐富性得到提高。以個人計算機為例:鍵盤和滑鼠是用戶向計算機直接輸入信息的主要工具,而顯示器、印表機、擴音器、耳機則返回處理結果。此外還有許多輸入設備可以接受其他不同種類的信息,如數字相機可以輸入圖像。在輸入輸出設備中,有兩類很值得注意:第一類是二級存儲設備,如硬碟,光碟或其他速度緩慢但擁有很高容量的設備。第二個是計算機網路訪問設備,通過他們而實現的計算機間直接數據傳送極大地提升了計算機的價值。今天,國際網際網路成就了數以千萬計的計算機彼此間傳送各種類型的數據。

主要程序


簡單說,計算機程序就是計算機執行指令的一個串列。它既可以只是幾條執行某個簡單任務的指令,也可能是可能要操作巨大數據量的複雜指令隊列。許多計算機程序包含有百萬計的指令,而其中很多指令可能被反覆執行。在2005年,一部典型的個人計算機可以每秒執行大約30億條指令。計算機通常並不會執行一些很複雜的指令來獲得額外的機能,更多地它們是在按照程序員的排列來運行那些較簡單但為數眾多的短指令。
一般情況下,程序員們是不會直接用機器語言來為計算機寫入指令的。那麼做的結果只能是費時費力、效率低下而且漏洞百出。所以,程序員一般通過“高級”一些的語言來寫程序,然後再由某些特別的計算機程序,如解釋器或編譯器將之翻譯成機器語言。一些編程語言看起來很接近機器語言,如彙編程序,被認為是低級語言。而另一些語言,如即如抽象原則的Prolog,則完全無視計算機實際運行的操作細節,可謂是高級語言。對於一項特定任務,應該根據其事務特點,程序員技能,可用工具和客戶需求來選擇相應的語言,其中又以客戶需求最為重要(美國和中國軍隊的工程項目通常被要求使用Ada語言)。
計算機軟體是與計算機程序並不相等的另一個辭彙。計算機軟體一個較為包容性較強的技術術語,它包含了用於完成任務的各種程序以及所有相關材料。舉例說,一個視頻遊戲不但只包含程序本身,也包括圖片、聲音以及其他創造虛擬遊戲環境的數據內容。在零售市場,在一部計算機上的某個應用程序只是一個面向大量用戶的軟體的一個副本。這裡老生常談的例子當然還是微軟的office軟體組,它包括一系列互相關聯的、面向一般辦公需求的程序。
利用那些極其簡單的機器語言指令來實現無數功能強大的應用軟體意味著其編程規模註定不小。Windows XP這個操作系統程序包含的C++高級語言源代碼達到了4000萬行。當然這還不是最大的。如此龐大的軟體規模也顯示了管理在開發過程中的重要性。實際編程時,程序會被細分到每一個程序員都可以在一個可接受的時長內完成的規模。
即便如此,軟體開發的過程仍然進程緩慢,不可預見且遺漏多多。應運而生的軟體工程學就重點面向如何加快作業進度和提高效率與質量。

函數庫操作系統

在計算機誕生后不久,人們發現某些特定作業在許多不同的程序中都要被實施,比如說計算某些標準數學函數。出於效率考量,這些程序的標準版本就被收集到一個“庫”中以供各程序調用。許多任務經常要去額外處理種類繁多的輸入輸出介面,這時,用於連接的庫就能派上用場。
20世紀60年代,隨著計算機工業化普及,計算機越來越多地被用作一個組織內不同作業的處理。很快,能夠自動安排作業時續和執行的特殊軟體出現了。這些既控制硬體又負責作業時序安排的軟體被稱為“操作系統”。一個早期操作系統的例子是IBM的OS/360。
在不斷地完善中,操作系統又引入了時間共享機制——併發。這使得多個不同用戶可以“同時”地使用機器執行他們自己的程序,看起來就像是每個人都有一部自己的計算機。為此,操作系統需要向每個用戶提供一部“虛擬機”來分離各個不同的程序。由於需要操作系統控制的設備也在不斷增加,其中之一便是硬碟。因之,操作系統又引入了文件管理和目錄管理(文件夾),大大簡化了這類永久儲存性設備的應用。此外,操作系統也負責安全控制,確保用戶只能訪問那些已獲得允許的文件。
當然,到目前為止操作系統發展歷程中最後一個重要步驟就是為程序提供標準圖形用戶界面。儘管沒有什麼技術原因表明操作系統必須得提供這些界面,但操作系統供應商們總是希望並鼓勵那些運行在其系統上的軟體能夠在外觀和行為特徵上與操作系統保持一致或相似。
除了以上這些核心功能,操作系統還封裝了一系列其他常用工具。其中一些雖然對計算機管理並無重大意義,但是於用戶而言很是有用。比如,蘋果公司的Mac OS X就包含視頻剪輯應用程序。
一些用於更小規模的計算機的操作系統可能沒用如此眾多的功能。早期的微型計算機由於記憶體和處理能力有限而不會提供額外功能,而嵌入式計算機則使用特定化了的操作系統或者乾脆沒有,它們往往通過應用程序直接代理操作系統的某些功能。

應用介紹


起初,體積龐大而價格昂貴的數字計算機主要是用做執行科學計算,特別是軍用課題。如ENIAC最早就是被用作火炮彈計算和設計氫彈時計算斷面中子密度的(如今許多超級計算機仍然在模擬核試驗方面發揮著巨大作用)。澳大利亞設計的首部存儲程序計算機CSIR Mk I型負責對水電工程中的集水地帶的降雨情形進行評估。還有一些被用於解密,比如英國的“巨像”可編程計算機。除去這些早年的科學或軍工應用,計算機在其他領域的推廣亦十分迅速。
從一開始,存儲程序計算機就與商業問題的解決息息相關。早在IBM的第一部商用計算機誕生之前,英國J. Lyons等就設計製造了LEO以進行資產管理或迎合其他商業用途。由於持續的體積與成本控制,計算機開始向更小型的組織內普及。加之20世紀70年代微處理器的發明,廉價計算機成為了現實。80年代,個人計算機全面流行,電子文檔寫作與印刷,計算預算和其他重複性的報表作業越來越多地開始依賴計算機。
隨著計算機便宜起來,創作性的藝術工作也開始使用它們。人們利用合成器,計算機圖形和動畫來創作和修改聲音,圖像,視頻。視頻遊戲的產業化也說明了計算機在娛樂方面也開創了新的歷史。
計算機小型化以來,機械設備的控制也開始仰仗計算機的支持。其實,正是當年為了建造足夠小的嵌入式計算機來控制阿波羅1號才刺激了集成電路技術的躍進。今天想要找一部不被計算機控制的有源機械設備要比找一部哪怕是部分計算機控制的設備要難得多。可能最著名的計算機控制設備要非機器人莫屬,這些機器有著或多或少人類的外表和並具備人類行為的某一子集。在批量生產中,工業機器人已是尋常之物。不過,完全的擬人機器人還只是停留在科幻小說或實驗室之中。
機器人技術實質上是人工智慧(AI人工智慧)領域中的物理表達環節。所謂人工智慧(AI人工智慧)是一個定義模糊的概念但是可以肯定的是這門學科試圖令計算機擁有目前它們還沒有但作為人類卻固有的能力。數年以來,不斷有許多新方法被開發出來以允許計算機做那些之前被認為只有人才能做的事情。比如讀書、下棋。然而,到目前為止,在研製具有人類的一般“整體性”智能的計算機方面,進展仍十分緩慢。

網路國際網際網路

20世紀50年代以來計算機開始用作協調來自不同地方之信息的工具,美國軍方的賢者系統(SAGE)就是這方面第一個大規模系統。之後“軍刀”等一系列特殊用途的商業系統也不斷湧現出來。
70年代后,美國各大院校的計算機工程師開始使用電信技術把他們的計算機連接起來。由於這方面的工作得到了ARPA的贊助,其計算機網路也就被稱為ARPANET。此後,用於ARPA網的技術快速擴散和進化,這個網路也衝破大學和軍隊的範圍最終形成了今天的國際網際網路。網路的出現導致了對計算機屬性和邊界的再定義。太陽微系統公司的John Gage和Bill Joy就指出:“網路即是計算機”。計算機操作系統和應用程序紛紛向能訪問諸如網內其它計算機等網路資源的方向發展。最初這些網路設備僅限於為高端科學工作者所使用,但90年代后隨著電子郵件和萬維網技術的擴散,以及乙太網和ADSL等網路連接技術的廉價化,網際網路路已變得無所不在。今日入網的計算機總數,何止以千萬計;無線互聯技術的普及,使得網際網路在移動計算環境中亦如影隨形。比如在筆記本計算機上廣泛使用的Wi-Fi技術就是無線上網的代表性應用。
90年代之後,在電話數據機MODEM 技術成熟后,由窄頻的電話撥接,升級成為寬頻數據,這代表網路新時代來臨,由慢跑的速度改變而成開車的速度,也同時改變計算機用戶習慣,更大大普及網路聯繫傳訊的方式,如即時通或SKYPE等等,以往只能文字傳訊提升至影音傳輸;而雲端、大數據時代造就了各種新類型行業,如網路商店、網路電商、網路拍賣、網路銷售、網路遊戲、網路設計及架設,以及越來越普遍性的雲端數據資料庫或備份庫,正在時時優化及改變現有人類的生活。

下一代計算機


自問世以來數字計算機在速度和能力上有了可觀的提升,迄今仍有不少課題顯得超出了當前計算機的能力所及。對於其中一部分課題,傳統計算機是無論如何也不可能實現的,因為找到一個解決方法的時間還趕不上問題規模的擴展速度。因此,科學家開始將目光轉向生物計算技術和量子理論來解決這一類問題。比如,人們計劃用生物性的處理來解決特定問題(DNA計算)。由於細胞分裂的指數級增長方式,DNA計算系統很有可能具備解決同等規模問題的能力。當然,這樣一個系統直接受限於可控制的DNA總量。
量子計算機,顧名思義,利用了量子物理世界的超常特性。一旦能夠造出量子計算機,那麼它在速度上的提升將令一般計算機難以望其項背。當然,這種涉及密碼學和量子物理模擬的下一代計算機還只是停留在構想階段。

計算機學科


在當今世界,幾乎所有專業都與計算機息息相關。但是,只有某些特定職業和學科才會深入研究計算機本身的製造、編程和使用技術,用來詮釋計算機學科內不同研究領域的各個學術名詞的涵義不斷發生變化,同時新學科也層出不窮。
• 計算機工程:是電子工程的一個分支,主要研究計算機軟硬體和二者間的彼此聯繫。
• 計算機科學:是對計算機進行學術研究的傳統稱謂。主要研究計算技術和執行特定任務的高效演演算法。該門學科為我們解決確定一個問題在計算機領域內是否可解,如可解其效率如何,以及如何作成更加高效率的程序。時至今日,在計算機科學內已經派生了許多分支,每一個分支都針對不同類別的問題進行深入研究。
• 軟體工程:著重於研究開發高質量軟體系統的方法學和實踐方式,並試圖壓縮並預測開發成本及開發周期。
• 信息系統:研究計算機在一個廣泛的有組織環境(商業為主)中的計算機應用。
許多學科都與其他學科相互交織。如地理信息系統專家就是利用計算機技術來管理地理信息。
全球有三個較大規模的致力於計算機科學的組織:英國計算機學會;美國計算機協會(美國計算機協會);美國電機電子工程師協會。